Answer:
y=t−1+ce
−t
where t=tanx.
Given, cos
2
x
dx
dy
+y=tanx
⇒
dx
dy
+ysec
2
x=tanxsec
2
x ....(1)
Here P=sec
2
x⇒∫PdP=∫sec
2
xdx=tanx
∴I.F.=e
tanx
Multiplying (1) by I.F. we get
e
tanx
dx
dy
+e
tanx
ysec
2
x=e
tanx
tanxsec
2
x
Integrating both sides, we get
ye
tanx
=∫e
tanx
.tanxsec
2
xdx
Put tanx=t⇒sec
2
xdx=dt
∴ye
t
=∫te
t
dt=e
t
(t−1)+c
⇒y=t−1+ce
−t
where t=tanx
Answer:
75+75×15/100=75+11.25=86.25$
Answer:
x = 
Step-by-step explanation:
Given
kx - c = 9 ( add c to both sides )
kx = 9 + c ( isolate x by dividing both sides by k )
x = 
Step-by-step explanation:
the formula can be;
X+9x=10
10x=10X=10/10=1
X=1+9(1)=1+9=10 Answer