1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natita [175]
3 years ago
9

How many solutions does the system of equations have? 4x= -12y +16 and x+3y=4​

Mathematics
1 answer:
Verdich [7]3 years ago
7 0

Answer:

x=4-3y

Step-by-step explanation:

You might be interested in
The personnel department of a large corporation wants to estimate the family dental expenses of its employees to determine the f
geniusboy [140]

Answer:

The answer is "266.5".

Step-by-step explanation:

Given value:

115, 370, 250, 93, 540, 225, 177, 425, 318, 182, 275, and\  228.

find:

Sample mean=?

=\frac{\text{total dental expenses}}{number \ of \ employees}

=\frac{115+370+250+93+540+ 225+ 177+ 425+ 318+ 182+ 275+228}{12}\\\\=\frac{3,198}{12}\\\\=266.5\\\\

7 0
2 years ago
N – 8 = 16 to a verbal sentence
weqwewe [10]

Answer:

n is subtracted from 8 is equal to eight

7 0
3 years ago
Read 2 more answers
Sorry here's another problem I need help with​
tiny-mole [99]

Answer:

32

Step-by-step explanation:

You need to work backwards to solve this equation!

9 - 17 = -8

w / -4 = -8

32 / -4 = -8

Which means that  w = 32

5 0
3 years ago
Suppose integral [4th root(1/cos^2x - 1)]/sin(2x) dx = A<br>What is the value of the A^2?<br><br>​
Alla [95]

\large \mathbb{PROBLEM:}

\begin{array}{l} \textsf{Suppose }\displaystyle \sf \int \dfrac{\sqrt[4]{\frac{1}{\cos^2 x} - 1}}{\sin 2x}\ dx = A \\ \\ \textsf{What is the value of }\sf A^2? \end{array}

\large \mathbb{SOLUTION:}

\!\!\small \begin{array}{l} \displaystyle \sf A = \int \dfrac{\sqrt[4]{\frac{1}{\cos^2 x} - 1}}{\sin 2x}\ dx \\ \\ \textsf{Simplifying} \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt[4]{\sec^2 x - 1}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt[4]{\tan^2 x}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt{\tan x}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt{\tan x}}{\sin 2x}\cdot \dfrac{\sqrt{\tan x}}{\sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\tan x}{\sin 2x\ \sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\dfrac{\sin x}{\cos x}}{2\sin x \cos x \sqrt{\tan x}}\ dx\:\:\because {\scriptsize \begin{cases}\:\sf \tan x = \frac{\sin x}{\cos x} \\ \: \sf \sin 2x = 2\sin x \cos x \end{cases}} \\ \\ \displaystyle \sf A = \int \dfrac{\dfrac{1}{\cos^2 x}}{2\sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sec^2 x}{2\sqrt{\tan x}}\ dx, \quad\begin{aligned}\sf let\ u &=\sf \tan x \\ \sf du &=\sf \sec^2 x\ dx \end{aligned} \\ \\ \textsf{The integral becomes} \\ \\ \displaystyle \sf A = \dfrac{1}{2}\int \dfrac{du}{\sqrt{u}} \\ \\ \sf A= \dfrac{1}{2}\cdot \dfrac{u^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} + C = \sqrt{u} + C \\ \\ \sf A = \sqrt{\tan x} + C\ or\ \sqrt{|\tan x|} + C\textsf{ for restricted} \\ \qquad\qquad\qquad\qquad\qquad\qquad\quad \textsf{values of x} \\ \\ \therefore \boxed{\sf A^2 = (\sqrt{|\tan x|} + c)^2} \end{array}

\boxed{ \tt   \red{C}arry  \: \red{ O}n \:  \red{L}earning}  \:  \underline{\tt{5/13/22}}

4 0
2 years ago
Subtract the following complex numbers:<br> (3 +31) - (13+15)
vova2212 [387]

Answer:

33-28=5

Step-by-step explanation:

hope this helps

6 0
3 years ago
Read 2 more answers
Other questions:
  • How are graphs used to represent patterns??
    9·2 answers
  • Which equation is equivalent to log3(x+5)=2
    6·2 answers
  • Write two decimal are equivalent to given decimal 8.1
    11·1 answer
  • What is -14 squared + 5675843
    15·1 answer
  • An investment of $6,530 earns interest at the rate of 4% and is compounded quarterly. What is the accumulated value of the inves
    10·1 answer
  • What expressions are equivalent to 10x + 30x?
    6·1 answer
  • Hep me again please willl give brainliest
    6·2 answers
  • -2/3 + 3/9 help me please
    6·2 answers
  • I need help!!!!! Again
    12·1 answer
  • 10. Select all true statements.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!