You will find the area of the 5 surfaces made of glass. There is a front, back, 2 sides, and the bottom. Each face is in the shape of a rectangle, so you will multiply the length by the width.
1. Front- 24 x 27 =648
Back-24 x 27 = 648
2. Side- 21 x 27 =567
Side - 21 x 27 = 567
3. Bottom - 21 x 24 = 504
Add all these together for your total amount of glass needed. The answer is 2934 square cm of glass.
Answer:
La altura del depósito para que pueda contener 1000 metros cúbicos de agua es 2 m.
Step-by-step explanation:
Para calcular el volumen de un prisma rectangular, es necesario multiplicar sus 3 dimensiones: longitud*ancho*altura. El volumen se expresa en unidades cúbicas.
En este caso, se conoce la longitud y el ancho, cuyos valores son 25 y 20 metros. A su vez, se sabe que el depósito de agua debe contener 1000 m³. Entonces, siendo:
Volumen= longitud*ancho*altura
Y reemplazando los valores se obtiene:
1000 m³= 25 m* 20 m* altura
Resolviendo:
1000 m³= 500 m²* altura

altura= 2 m
<u><em>La altura del depósito para que pueda contener 1000 metros cúbicos de agua es 2 m.</em></u>
Answer:
30%
Step-by-step explanation:
because you use %
so that is why i think but i am not sure
OK, so the graph is a parabola, with points x=0,y=0; x=6,y=-9; and x=12,y=0
Because the roots of the equation are 0 and 12, we know the formula is therefore of the form
y = ax(x - 12), for some a
So put in x = 6
-9 = 6a(-6)
9 = 36a
a = 1/4
So the parabola has a curve y = x(x-12) / 4, which can also be written y = 0.25x² - 3x
The gradient of this is dy/dx = 0.5x - 3
The key property of a parabolic dish is that it focuses radio waves travelling parallel to the y axis to a single point. So we should arrive at the same focal point no matter what point we chose to look at. So we can pick any point we like - e.g. the point x = 4, y = -8
Gradient of the parabolic mirror at x = 4 is -1
So the gradient of the normal to the mirror at x = 4 is therefore 1.
Radio waves initially travelling vertically downwards are reflected about the normal - which has a gradient of 1, so they're reflected so that they are travelling horizontally. So they arrive parallel to the y axis, and leave parallel to the x axis.
So the focal point is at y = -8, i.e. 1 metre above the back of the dish.
A kiddy pool going over it’s limit so you have to subtract 4 liters to get to the safe level bar.