Answer:
155
Step-by-step explanation:
5*5=25
((5*13)/2)*4=130
130+25=155
9514 1404 393
Answer:
top down: ∞, 0, 1, 0, ∞
Step-by-step explanation:
The equation will have infinite solutions when the left side and right side simplify to the same expression. This is the case for the first and last expressions listed.
2(x -5) = 2(x -5) . . . . expressions are already identical
x +2(x -5) = 3(x -2) -4 ⇒ 3x -10 = 3x -10 . . . the same simplified expression
__
The equation will have no solutions when the x-coefficients are the same, but there are different added constants.
5(x +4) = 5(x -6) ⇒ x +4 = x -6 . . . not true for any x
4(x -2) = 4(x +2) ⇒ x -2 = x +2 . . . not true for any x
__
The equation will have one solution when coefficients of x are different.
5(x +4) = 3(x -6) ⇒ 2x = -38 ⇒ x = -19
So, she has 550 dollars saved. If the junior season pass costs 315, you subtract that from 550. You should then have 235 dollars. Next, you divide 235 by 45 dollars per lesson, and you should get 5.22. You can't buy half a lesson, so she only has enough for 5 lessons.
Answer:
Step-by-step explanation:
(10x-4)/5=20
decimal is x= 10.4
Beth's description of the transformation is incorrect
<h3>Complete question</h3>
Beth says that the graph of g(x)=x-5+1 is a translation of 5 units to the left and 1 unit up of f(x) = x. She continues to explain that the point (0,0) on the square root function would be translated to the point (-5,1) on the graph of g(x). Is Beth's description of the transformation correct? Explain
<h3>How to determine the true statement?</h3>
The functions are given as:
g(x) = x - 5 + 1
f(x) = x
When the function f(x) is translated 5 units left, we have:
f(x + 5) = x + 5
When the above function is translated 1 unit up, we have:
f(x + 5) + 1 = x + 5 + 1
This means that the actual equation of g(x) should be
g(x) = x + 5 + 1
And not g(x) = x - 5 + 1
By comparison;
g(x) = x - 5 + 1 and g(x) = x + 5 + 1 are not the same
Hence, Beth's description of the transformation is incorrect
Read more about transformation at:
brainly.com/question/17121698
#SPJ1