Answer:
z score Perry 
z score Alice 
Alice had better year in comparison with Perry.
Step-by-step explanation:
Consider the provided information.
One year Perry had the lowest ERA of any male pitcher at his school, with an ERA of 3.02. For the males, the mean ERA was 4.206 and the standard deviation was 0.846.
To find z score use the formula.

Here μ=4.206 and σ=0.846



Alice had the lowest ERA of any female pitcher at the school with an ERA of 3.16. For the females, the mean ERA was 4.519 and the standard deviation was 0.789.
Find the z score
where μ=4.519 and σ=0.789



The Perry had an ERA with a z-score is –1.402. The Alice had an ERA with a z-score is –1.722.
It is clear that the z-score value for Perry is greater than the z-score value for Alice. This indicates that Alice had better year in comparison with Perry.
P(x)=-15+7/4=-2
P(y)=12-4/4=2
P=(-2,2)
Answer:
could you please provide a picture of the angles
Step-by-step explanation:
Answer:
The first term of the geometric series is 1
Step-by-step explanation:
In this question, we are tasked with calculating the first term of a geometric series, given the common ratio, and the sum of the first 8 terms.
Mathematically, the sum of terms in a geometric series can be calculated as;
S = a(r^n-1)/( r-1)
where a is the first term that we are looking for
r is the common ratio which is 3 according to the question
n is the number of terms which is 8
S is the sum of the number of terms which is 3280 according to the question
Plugging these values, we have
3280 = a(3^8 -1)/(3-1)
3280 = a( 6561-1)/2
3280 = a(6560)/2
3280 = 3280a
a = 3280/3280
a = 1
Answer:
The error in rounding a number is half of the unit of measure. The number was rounded to the nearest 0.1 unit so the error is half of 0.1 which is 12⋅0.1=0.05
2
1
⋅0.1=0.05. Since 3.7+0.05=3.753.7+0.05=3.75 and 3.7−0.05=3.653.7−0.05=3.65, then the error interval is \boxed{3.65\le x<3.75}.
Step-by-step explanation: