A=LW,
W=L/2, L=2W so:
A=(2W)W
A=2W^2 and A=34 so:
2W^2=34
W^2=17
W=√17, and since L=2W
L=2√17
So the length is 2√17 and the width is √17
(length≈8.25 and width≈4.12 if you wanted approximations...)
Answer: 
Step-by-step explanation:
Rewrite the expression:

Factor out the negative:


Rewrite the sum:


Calculate the sum:


Solve:


Please mark brainliest if this helped you :)
Answer:
Mia: 90 and Isabella: 30
Step-by-step explanation:
Mia: 60 x 0.5 (50%) is 30
Isabella: 60 x 1.5 (150%) is 90
Answer:
x1 =2-5i*sqrt(2)
x2 =2+5i*sqrt(2)
Step-by-step explanation:
-x^2 +4x-54=0 (quadratic equation)
a=-1, b=4, c=-54
x1=(-b+sqrt(b^2-4ac))/2a
x1=(-4+sqrt(4^2 - 4*(-1)(-54))/2*(-1)
x1=(-4+sqrt(16-216))/(-2)
x1 =(-4+sqrt(-200))/(-2)
x1 =(-4+sqrt(200i^2))/(-2) i^2=-1
x1 =(-4+sqrt(100*2*i^2))/(-2)
x1 =(-4+10i*sqrt(2))/(-2)
x1 =2-5i*sqrt(2)
x2 =(-b-sqrt(b^2-4ac))/2a
x2 =(-4-10i*sqrt(2))/(-2)
x2 =2+5i*sqrt(2)