3.28·3 = 9.84 is the same as:
3.28+3.28+3.28 = 9.84
Hope this helped! Good luck!
Answer: -29a-6b+59c
You need to combine like terms
5×2= Gwen
Gwen ran 10 miles
hmmm what would it be the bisector point of a line with those points? let's check

now, let's check the slope of those two points, bearing in mind that a perpendicular line will have a <u>negative reciprocal slope</u> to that one.
![\bf (\stackrel{x_1}{4}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{-5}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{-5-1}{2-4}\implies \cfrac{-6}{-2}\implies 3 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{3\implies \cfrac{3}{1}}\qquad \qquad \qquad \stackrel{reciprocal}{\cfrac{1}{3}}\qquad \stackrel{negative~reciprocal}{-\cfrac{1}{3}}}](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B4%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B2%7D~%2C~%5Cstackrel%7By_2%7D%7B-5%7D%29%20%5C%5C%5C%5C%5C%5C%20slope%20%3D%20m%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%7B%20y_2-%20y_1%7D%7D%7B%5Cstackrel%7Brun%7D%7B%20x_2-%20x_1%7D%7D%5Cimplies%20%5Ccfrac%7B-5-1%7D%7B2-4%7D%5Cimplies%20%5Ccfrac%7B-6%7D%7B-2%7D%5Cimplies%203%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bperpendicular%20lines%20have%20%5Cunderline%7Bnegative%20reciprocal%7D%20slopes%7D%7D%20%7B%5Cstackrel%7Bslope%7D%7B3%5Cimplies%20%5Ccfrac%7B3%7D%7B1%7D%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cstackrel%7Breciprocal%7D%7B%5Ccfrac%7B1%7D%7B3%7D%7D%5Cqquad%20%5Cstackrel%7Bnegative~reciprocal%7D%7B-%5Ccfrac%7B1%7D%7B3%7D%7D%7D)
so, we're really looking for the equation of a line whose slope is -1/3 and runs through (3, -2)

In <span>equilateral triangle all sides are equal =x,
from right triangle that is formed by </span>apothem , height 7*3= 21
hypotenuse /opposite leg = sin angle,
hypotenuse is a side of triangle =x, opposite leg is apotheme =21,
angle in equilateral triangle =60⁰
21/x= sin 60, x*sin60=21, x=21/sin60, x=21/(√3/2), x=42/√3
Area of triangle =1/2 x*x*sin angle
Area of triangle =1/2 *42/√3*42/√3*sin 60=1/2*(42²/3)*(√3/2) ≈ 255 cm²
this is just second way to do this problem, that I did at first (either way is correct)
<span> apothem divides one side by half,
so we get small right triangle with sides x hypotenuse, x/2 is one leg , and 21 is another leg
</span>by Pythagorean theorem
x²=(x/2)² +21²
x²-x²/4=441
3x²/4=441
3x²=441*4=1764
x²=1764/3
x=42/√3
Area of triangle =1/2*base *height =1/2*42/√3 *21≈255 cm²