The missing dimension, x, is 7.5.
if you take 45 and divide it by 6 you can get the next dimension needed to get the full number, 45. You can also find it by dividing 35 and 4. I hope this helps.
Answer:
Step 1: Solve one of the equations for one of the variables. Let's solve the first equation for x
Thus, option A) is true.
The solution to the system of equations be:

Step-by-step explanation:
It is important to remember that when we solve the system of equations, the first step we need to do is to solve one of the equations for one of the variables.
Given the system of equations


Step 1: Solve one of the equations for one of the variables. Let's solve the first equation for x

Add y to both sides


Thus, option A) is true.
<u>NOW LET US SOLVE THE REMAINING PORTION</u>
to solve for y



For x = -1 + y
substitute y = 5


Thus, the solution to the system of equations be:

Answer:
(a)The amount of fuel in dollars = $1.62
(b)The rate equivalent to in U.S. dollars per gallon = $ 1.45
Step-by-step explanation:
Reid will be driving through Spain this summer. He did some research and knows that the average price of gas in Spain is approximately 1.12 euros per liter.
1 USD = 0.69 euros
We have to find the money that we should pay in order to get the same amount of fuel.
1 euro = 
1 euro = $1.45
So 1.12 euros = 1.12
1.45 = $1.62
(a)The amount of fuel in dollars = $1.62
(b)The rate equivalent to in U.S. dollars per gallon = $ 1.45
Answer:
<h2>
<em>x</em><em>=</em><em>3</em></h2>
<em>Sol</em><em>ution</em><em>,</em>
<em>Theorem</em><em>:</em>
<em>The</em><em> </em><em>angle</em><em> </em><em>bisector</em><em> </em><em>theorem</em><em> </em><em>states </em><em>that</em><em> </em><em>if</em><em> </em><em>a</em><em> </em><em>ray </em><em>bisects</em><em> </em><em>an</em><em> </em><em>angle</em><em> </em><em>of</em><em> </em><em>a</em><em> </em><em>triangle,</em><em>then</em><em> </em><em>it</em><em> </em><em>divides</em><em> </em><em>the</em><em> </em><em>oppos</em><em>ite</em><em> </em><em>side</em><em> </em><em>into</em><em> </em><em>two </em><em>segments</em><em> </em><em>that</em><em> </em><em>are</em><em> </em><em>proportional</em><em> </em><em>to</em><em> </em><em>other</em><em> </em><em>two</em><em> </em><em>sides</em><em>.</em>
<em>By</em><em> </em><em>the</em><em> </em><em>theorem</em><em>,</em>
<em>
</em>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em>
The answer to this problem is A 10