1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulsSmile [24]
3 years ago
15

Determine 3rd term in the geometric sequence whose first term is -8 and whose common ratio is 6

Mathematics
2 answers:
k0ka [10]3 years ago
8 0

it would be -288. Correct answer


Brrunno [24]3 years ago
3 0
-8, -48, -288
or
-8, -4/3, -2/9
You might be interested in
((81x^3 y^(-1/3))^1/4)/(x^2 y)^1/4 simplify
malfutka [58]
\bf a^{\frac{{ n}}{{ m}}} \implies  \sqrt[{ m}]{a^{ n}} \qquad \qquad
\sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}
\\\\\\
\left.\qquad \qquad \right.\textit{negative exponents}\\\\
a^{-{ n}} \implies \cfrac{1}{a^{ n}}
\qquad \qquad
\cfrac{1}{a^{ n}}\implies a^{-{ n}}
\qquad \qquad 
a^{{{  n}}}\implies \cfrac{1}{a^{-{{  n}}}}\\\\
-------------------------------\\\\

\bf \cfrac{\left( 81x^3y^{-\frac{1}{3}} \right)^{\frac{1}{4}}}{(x^2y)^{\frac{1}{4}}}\implies \cfrac{81^{\frac{1}{4}}x^{3\cdot {\frac{1}{4}}}y^{-\frac{1}{3}\cdot {\frac{1}{4}}}}{x^{2\cdot {\frac{1}{4}}}y^{\frac{1}{4}}}\implies
\cfrac{81^{\frac{1}{4}}x^{\frac{3}{4}}y^{-\frac{1}{12}}}{x^{\frac{2}{4}} y^{\frac{1}{4}}}

\bf \cfrac{81^{\frac{1}{4}}x^{\frac{3}{4}}x^{-\frac{2}{4}}}{ y^{\frac{1}{4}}y^{\frac{1}{12}}}\implies \cfrac{(3^4)^{\frac{1}{4}}x^{\frac{3}{4}-\frac{2}{4}}}{y^{\frac{1}{4}+\frac{1}{12}}}\implies \cfrac{3^{4\cdot \frac{1}{4}}x^{\frac{1}{4}}}{y^{\frac{4}{12}}}\implies \cfrac{3^{\frac{4}{4}}x^{\frac{1}{4}}}{y^{\frac{1}{3}}}
\\\\\\
\cfrac{3\sqrt[4]{x}}{\sqrt[3]{y}}
7 0
3 years ago
S is between B and C. True or false
Brut [27]
False because I looked it up online
8 0
3 years ago
Read 2 more answers
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
John leaves school to go home.his bus drives 6 kilometers north and then goes 7 kilometers west.how far is John's house from the
otez555 [7]

Answer:

John is 9.21 km form the school.

Step-by-step explanation:

John leaves school to go home. His bus drives 6 kilometres north and then goes 7 kilometres west. It is required to find John's distance from the school. It is equal to the shortest path covered or its displacement. So,

d=\sqrt{6^2+7^2} \\\\d=9.21\ km

So, John is 9.21 km form the school.

5 0
3 years ago
Anyone know the answer to this?
Kaylis [27]

I think its a

because the line segments connect each other.

3 0
3 years ago
Other questions:
  • What is the equation in vertex form of the quadratic function that has a vertex at (6,-7)
    10·1 answer
  • Orange squishier have 7 legs and red squishier have 3 legs. I counted 57 legs. When I bought the squishes each bag had 2 orange
    11·2 answers
  • Omg plz help have no idea question below
    10·1 answer
  • What are the zero/intercepts of the equations (x+7)(x-2)=0
    10·1 answer
  • If you are stranded on a island and you can only have 3 things with you, what would the 3 things be? Money is not a answer
    8·2 answers
  • Can someone please help me?
    9·2 answers
  • Solve for X in the triangle. Round your answer to the nearest tenth
    12·1 answer
  • Can someone please help me with this question and give step by step so i understand it better? tysm
    13·1 answer
  • A baker bakes 50 muffins. 1/5 of the muffins are chocolate chip. 1/2 of the muffins are blueberry. The rest are cinnamon. How ma
    13·1 answer
  • Find the midpoint of
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!