1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
8

What operation makes the statement true; 18 __ (-20) =-2

Mathematics
2 answers:
Finger [1]3 years ago
6 0

Answer:

\huge\boxed{\text{+}}

Step-by-step explanation:

To make this statement true, we want to make it so that when -20 is "<em>something</em>'d" to 18, we get -2.

Let's try all the common operators first - add, subtract, multiply, divide.

Let's try add.

If we put a plus sign there:

18 + (-20) = -2

Adding a negative is the same as subtracting a positive.

18-20=-2

This is true! 18 - 20 is indeed -2. This means + is the right operator.

For fun, let me briefly go over what happens with all the other operators.

Subtract:

18 - (-20) = -2\\\\18+20=-2\\\\28 \neq -2

Multiply:

18 \cdot (-20) = -2\\\\-360 \neq -2

Divide:

18 \div (-20) = -2\\\\-0.9 \neq -2

Hope this helped!

8090 [49]3 years ago
5 0

Answer:

18-20=-2

Step-by-step explanation:

18-20=-2

18+(-20)=-2

You might be interested in
What is x, the distance between points A and A'?
adoni [48]

Answer:

C on edge 13.6

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
A light bulb is designed by revolving the graph of:
nadya68 [22]

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

5 0
3 years ago
Find the equation of the line that is perpendicular to y = two over three x and contains the point (four,-eight)
Sophie [7]
When it is perpendicular, the slope is the negative reciprocal so it would equal -3/2x. Plug in the points to the equation so you can find the intercept. -8=-3/2(4)+b
Combine: -8=-6+b
Add 6: -2=b
The equation would be f(x)=-3/2x-2
Hope this helped and sorry if I am wrong!
7 0
3 years ago
Explain why the exponents cannot be added in the product 12^3 * 11^3
jek_recluse [69]
Because they do not have like bases. 
4 0
2 years ago
Can someone please help me ASAP​
Sonja [21]

Answer:

x^2 + 5n = 4mx

=> x^2 - 4mx + 5n = 0

D=0 (since one root then roots are equal)

b^2-4ac = 0

(-4m)^2 - 4(1)(5n) = 0

16m^2 - 20n = 0

16m^2 = 20n

8m^2 = 10n

4m^2 = 5n

hope it helps.......

7 0
2 years ago
Other questions:
  • Discuss the advantages of understanding accounting as it relates to your current or future position.
    7·1 answer
  • Write each mixed number as a decimal
    6·1 answer
  • Please help me with this i need help
    10·1 answer
  • The width of a rectangle is 13 inches. the width is 5 inches more than twice the length, x​
    9·1 answer
  • Mr. Phillip's investment account lost $50, and gained $200 and then lost $400 . What was the total change in the amount of money
    8·2 answers
  • (x^3-6x^2-9)/(x-6) long division
    14·1 answer
  • What is 7x8 pls i need some help
    6·2 answers
  • 1.37x = 12.741<br><br> A.14.111<br> B.17.45517<br> C.9.3<br> D.11.371
    10·2 answers
  • Helpppppp againnn plzzz
    7·2 answers
  • If , then what is –K<br><br>Asap!!!​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!