Answer:
La suma de cifras del producto original es igual a 12.
Step-by-step explanation:
De acuerdo a la información proporcionada, si multiplicas un número "x" por 32 su resultado sería igual al producto original "y" más 54 dado que dice que se obtiene un producto mayor en 54 al producto original, lo que se puede expresar de la siguiente forma:
32x=y+54
Además, se puede inferir a partir del enunciado que si el número x se hubiera multiplicado por 23 el resultado habría sido el producto original que lo denominamos como "y", por lo que puedes decir que:
y=23x
Ahora puedes reemplazar y=23x en 32x=y+54 y despejar x:
32x=23x+54
32x-23x=54
9x=54
x=54/9
x=6
Finalmente, puedes reemplazar el valor de x en y=23x:
y=23x
y=23*6
y=138
Suma de cifras: 1+3+8 = 12
De acuerdo a esto, la respuesta es que la suma de cifras es igual a 12.
Answer:
55
Step-by-step explanation:
12 x 5 = 60
60-5 = 55
55 is not prime
Answer:
The equation of a parabola is

Step-by-step explanation:
(h,k) is the vertex and (f,k) is the focus.
Thus, f = 1, k = −4.
The distance from the focus to the vertex is equal to the distance from the vertex to the directrix: f - h = h - 2.
Solving the system, we get h = 3/2, k = -4, f = 1.
The standard form is:

The general form is:

The vertex form is:

The axis of symmetry is the line perpendicular to the directrix that passes through the vertex and the focus: y = -4.
The focal length is the distance between the focus and the vertex: 1/2.
The focal parameter is the distance between the focus and the directrix: 1.
The latus rectum is parallel to the directrix and passes through the focus: x = 1.
The length of the latus rectum is four times the distance between the vertex and the focus: 2.
The eccentricity of a parabola is always 1.
The x-intercepts can be found by setting y = 0 in the equation and solving for x.
x-intercept:

The y-intercepts can be found by setting x = 0 in the equation and solving for y.
y-intercepts:


Answer:784
Step-by-step explanation:
Answer:
You haven't given a picture of the graph dear.
The point (-3,-2) lies in the third quadrant.