Answer:
9
Step-by-step explanation:
3*3
Answer:
<u>x-intercept</u>
The point at which the curve <u>crosses the x-axis</u>, so when y = 0.
From inspection of the graph, the curve appears to cross the x-axis when x = -4, so the x-intercept is (-4, 0)
<u>y-intercept</u>
The point at which the curve <u>crosses the y-axis</u>, so when x = 0.
From inspection of the graph, the curve appears to cross the y-axis when y = -1, so the y-intercept is (0, -1)
<u>Asymptote</u>
A line which the curve gets <u>infinitely close</u> to, but <u>never touches</u>.
From inspection of the graph, the curve appears to get infinitely close to but never touches the vertical line at x = -5, so the vertical asymptote is x = -5
(Please note: we cannot be sure that there is a horizontal asymptote at y = -2 without knowing the equation of the graph, or seeing a larger portion of the graph).
Answer:
the answe is 10.30
Step-by-step explanation:
im also from k12 lol
(- 2, - 3) is a solution to the given system of equations.
Answer: Option D
<u>Step-by-step explanation:</u>
Given equation are not presented in proper format. So, let assume the given system of are as below,
2 x - y = -1
2 x -4 y = 8
Now, subtract the second equation from the first, we get
(2 x - y) -(2 x - 4 y) = -1 -8
3 y = -9
y = -3 (obtained this when divide by 3)
Substituting y = - 3 into the first equation, we get
2 x - (-3) = - 1
2 x = - 1 + 3
x = - 2 (obtained when divide by 2)
Now, the answer is (x, y) = (- 2, - 3)
Answer:x
= -1 +√
3(3 + y)
Step-by-step explanation: solve the equation for x by finding a, b and c of the quadratic then applying the quadractic formula