Answer:
8:16
Step-by-step explanation:
Answer: x=
Makes It True
Explantion: step 1: simplify both sides of the equation. −5x−(−7−4x)=−2(3x−4) −5x+−1(−7−4x)=−2(3x−4)(distribute the negative sign) −5x+(−1)(−7)+−1(−4x)=−2(3x−4) −5x+7+4x=−2(3x−4) −5x+7+4x=(−2)(3x)+(−2)(−4)(distribute) −5x+7+4x=−6x+8 (−5x+4x)+(7)=−6x+8(combine like terms) −x+7=−6x+8 −x+7=−6x+8 step 2: add 6x to both sides. −x+7+6x=−6x+8+6x 5x+7=8 step 3: subtract 7 from both sides. 5x+7−7=8−7 5x=1
If I Helped, Please Mark Me As Brainliest, Have A Great Day :D
Answer:
101 2/3
Step-by-step explanation:
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2
Answer:
he will have saved 45$
Step-by-step explanation:
if you take 2 from every 5 and 5 x 15 = 150, you would do 2 x 15 and get 30. So, the answer is 30$