The answer to this would be 1/5.
hope this helps
Answer:
see in the graph, the circle has: the centre I(3; -2)
r = 3
=> the equation: (x - 3)² + (y + 2)² = 9
-2<em>x</em> + 6<em>y</em> = -38
3<em>x</em> - 4<em>y</em> = 32
To solve by elimination, multiply the top equation by 3 and the bottom equation by 2.
3(-2<em>x</em> + 6<em>y</em> = -38) --> -6<em>x</em> + 18<em>y</em> = -114
2(3<em>x</em> - 4<em>y</em> = 32) --> 6<em>x</em> - 8<em>y</em> = 64
Add the equations.
-6<em>x </em>+ 18<em>y</em> = -114
6<em>x</em> - 8<em>y</em> = 64
+_____________
0 + 10<em>y</em> = -50
10<em>y</em> = -50
<em>y</em> = -5
Substitute -5 for y into one of the original equations to find x.
3<em>x</em> - 4<em>y</em> = 32
3<em>x</em> - 4(-5) = 32
3<em>x</em> + 20 = 32
3<em>x</em> = 12
<em>x</em> = 4
Check work by plugging the <em>x</em>- and <em>y</em>-values into both of the original equations.
-2<em>x</em> + 6<em>y</em> = -38
-2(4) + 6(-5) = -38
-8 - 30 = 38
38 = 38
3<em>x</em> - 4<em>y</em> = 32
3(4) - 4(-5) = 32
12 + 20 = 32
32 = 32
Answer:
<em>x</em> = 4 and <em>y</em> = -5; (4, -5).
Check the picture below.
well, we want only the equation of the diametrical line, now, the diameter can touch the chord at any several angles, as well at a right-angle.
bearing in mind that <u>perpendicular lines have negative reciprocal</u> slopes, hmm let's find firstly the slope of AB, and the negative reciprocal of that will be the slope of the diameter, that is passing through the midpoint of AB.
![\bf A(\stackrel{x_1}{1}~,~\stackrel{y_1}{4})\qquad B(\stackrel{x_2}{5}~,~\stackrel{y_2}{1}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{1}-\stackrel{y1}{4}}}{\underset{run} {\underset{x_2}{5}-\underset{x_1}{1}}}\implies \cfrac{-3}{4} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{slope of AB}}{-\cfrac{3}{4}}\qquad \qquad \qquad \stackrel{\textit{\underline{negative reciprocal} and slope of the diameter}}{\cfrac{4}{3}}](https://tex.z-dn.net/?f=%5Cbf%20A%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B4%7D%29%5Cqquad%20B%28%5Cstackrel%7Bx_2%7D%7B5%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%20~%5Chfill%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B1%7D-%5Cstackrel%7By1%7D%7B4%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B5%7D-%5Cunderset%7Bx_1%7D%7B1%7D%7D%7D%5Cimplies%20%5Ccfrac%7B-3%7D%7B4%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bslope%20of%20AB%7D%7D%7B-%5Ccfrac%7B3%7D%7B4%7D%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7B%5Cunderline%7Bnegative%20reciprocal%7D%20and%20slope%20of%20the%20diameter%7D%7D%7B%5Ccfrac%7B4%7D%7B3%7D%7D)
so, it passes through the midpoint of AB,

so, we're really looking for the equation of a line whose slope is 4/3 and runs through (3 , 5/2)

Answer:
26
Step-by-step explanation:
4(x-4)-3x=10
- Rule = a(b + c) = ab + ac
- Rule = a(b - c) = ab - ac
4(x-4) = 4x - 16
4(x-4)-3x=10
4x - 16 - 3x = 10
x - 16 = 10
x -16 +16 = 10 +16
x = 26
Hope this helps ^-^