1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ainat [17]
3 years ago
15

Persephone is creating a flower garden in her back yard. If she needs 30 pounds

Mathematics
1 answer:
Likurg_2 [28]3 years ago
5 0
I thinks it’s B but I’m not sure sorry if not but B
You might be interested in
Evaluate the iterated integral. $$ \int\limits_0^{2\pi}\int\limits_0^y\int\limits_0^x {\color{red}9} \cos(x+y+z)\,dz\,dx\,dy $$
KengaRu [80]
\displaystyle\int_{y=0}^{y=2\pi}\int_{x=0}^{x=y}\int_{z=0}^{z=x}\cos(x+y+z)\,\mathrm dz\,\mathrm dx\,\mathrm dy=\int_{y=0}^{y=2\pi}\int_{x=0}^{x=y}\sin(x+y+z)\bigg|_{z=0}^{z=x}\,\mathrm dx\,\mathrm dy
\displaystyle=\int_{y=0}^{y=2\pi}\int_{x=0}^{x=y}\sin(2x+y)-\sin(x+y)\,\mathrm dx\,\mathrm dy
\displaystyle=\int_{y=0}^{y=2\pi}-\frac12\left(\cos(2x+y)-2\cos(x+y)\right)\bigg|_{x=0}^{x=y}\,\mathrm dx\,\mathrm dy
\displaystyle=\int_{y=0}^{y=2\pi}-\frac12\left((\cos3y-2\cos2y)-(\cos y-2\cos y)\right)\bigg|_{x=0}^{x=y}\,\mathrm dy
\displaystyle=-\frac12\int_{y=0}^{y=2\pi}(\cos3y-2\cos2y+\cos y)\,\mathrm dy
\displaystyle=-\frac12\left(\frac13\sin3y-\sin2y+\sin y\right)\bigg|_{y=0}^{y=2\pi}
=0
4 0
3 years ago
Your math teacher tells you that the next test is worth 100 points and contains 38 problems. Multiple-choice questions are worth
erastova [34]

Answer:

Most likely 8 word problems and 30 multiple choice

Step-by-step explanation:

8x5=40 and 30×2=60

40+60=100

7 0
3 years ago
Analia is a school district manager. Here are some details about two schools in her district for the last school year:
AfilCa [17]

Answer is in this link:

brainly.com/question/17270742

6 0
2 years ago
PLS ANSWER ASAP 30 POINTS!!! CHECK PHOTO! WILL MARK BRAINLIEST TO WHO ANSWERS
Sveta_85 [38]

I'll do Problem 8 to get you started

a = 4 and c = 7 are the two given sides

Use these values in the pythagorean theorem to find side b

a^2 + b^2 = c^2\\\\4^2 + b^2 = 7^2\\\\16 + b^2 = 49\\\\b^2 = 49 - 16\\\\b^2 = 33\\\\b = \sqrt{33}\\\\

With respect to reference angle A, we have:

  • opposite side = a = 4
  • adjacent side = b = \sqrt{33}
  • hypotenuse = c = 7

Now let's compute the 6 trig ratios for the angle A.

We'll start with the sine ratio which is opposite over hypotenuse.

\sin(\text{angle}) = \frac{\text{opposite}}{\text{hypotenuse}}\\\\\sin(A) = \frac{a}{c}\\\\\sin(A) = \frac{4}{7}\\\\

Then cosine which is adjacent over hypotenuse

\cos(\text{angle}) = \frac{\text{adjacent}}{\text{hypotenuse}}\\\\\cos(A) = \frac{b}{c}\\\\\cos(A) = \frac{\sqrt{33}}{7}\\\\

Tangent is the ratio of opposite over adjacent

\tan(\text{angle}) = \frac{\text{opposite}}{\text{adjacent}}\\\\\tan(A) = \frac{a}{b}\\\\\tan(A) = \frac{4}{\sqrt{33}}\\\\\tan(A) = \frac{4\sqrt{33}}{\sqrt{33}*\sqrt{33}}\\\\\tan(A) = \frac{4\sqrt{33}}{(\sqrt{33})^2}\\\\\tan(A) = \frac{4\sqrt{33}}{33}\\\\

Rationalizing the denominator may be optional, so I would ask your teacher for clarification.

So far we've taken care of 3 trig functions. The remaining 3 are reciprocals of the ones mentioned so far.

  • cosecant, abbreviated as csc, is the reciprocal of sine
  • secant, abbreviated as sec, is the reciprocal of cosine
  • cotangent, abbreviated as cot, is the reciprocal of tangent

So we'll flip the fraction of each like so:

\csc(\text{angle}) = \frac{\text{hypotenuse}}{\text{opposite}} \ \text{ ... reciprocal of sine}\\\\\csc(A) = \frac{c}{a}\\\\\csc(A) = \frac{7}{4}\\\\\sec(\text{angle}) = \frac{\text{hypotenuse}}{\text{adjacent}} \ \text{ ... reciprocal of cosine}\\\\\sec(A) = \frac{c}{b}\\\\\sec(A) = \frac{7}{\sqrt{33}} = \frac{7\sqrt{33}}{33}\\\\\cot(\text{angle}) = \frac{\text{adjacent}}{\text{opposite}} \ \text{  ... reciprocal of tangent}\\\\\cot(A) = \frac{b}{a}\\\\\cot(A) = \frac{\sqrt{33}}{4}\\\\

------------------------------------------------------

Summary:

The missing side is b = \sqrt{33}

The 6 trig functions have these results

\sin(A) = \frac{4}{7}\\\\\cos(A) = \frac{\sqrt{33}}{7}\\\\\tan(A) = \frac{4}{\sqrt{33}} = \frac{4\sqrt{33}}{33}\\\\\csc(A) = \frac{7}{4}\\\\\sec(A) = \frac{7}{\sqrt{33}} = \frac{7\sqrt{33}}{33}\\\\\cot(A) = \frac{\sqrt{33}}{4}\\\\

Rationalizing the denominator may be optional, but I would ask your teacher to be sure.

7 0
1 year ago
3d - 4, where d = 5 .
Crank
The correct answer would be-11
8 0
2 years ago
Read 2 more answers
Other questions:
  • Find the simplest form of 3/8
    8·1 answer
  • John is saving for his trip to see the alamo he started with $24 in his savings account. every week he earns $15 for babysitting
    14·2 answers
  • There are 5 red roses, 3 yellow roses, and 8 white roses in a tray. If Stephanie picked 2 roses one after the other without repl
    7·1 answer
  • Help me plz 50 points and ill give brainliest if you answer all​
    5·2 answers
  • A swimmer swam the 50-meter freestyle in a time of 21 seconds. What was his speed to the nearest tenth of a meter per second?
    7·2 answers
  • What is the answer 2p-a=3p+b if p is the subject of the formula
    15·1 answer
  • What’s the surface area to 1,2,3 and 4
    12·1 answer
  • You tape two pieces of paper together that each measure
    13·2 answers
  • -10 = -b/4. What is the answer, I can't find it.
    10·2 answers
  • Hey<br>please solve<br>it's really easy​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!