Answer:
17.5 meters
Step-by-step explanation:
To find how far she walks, multiply 2.5 by 7
2.5(7)
= 17.5
So, in 7 days, she walks 17.5 meters
Answer:
50 Minutes.
Step-by-step explanation:
The function c approximates the total number of calls made after m minutes since the start of the phone tree.

We need to find the number of minutes after which the total number of calls will 363.
Substitute c(m)=363 in the given function.

Multiply 3/2 both sides.


Add 1 on both sides.


On comparing both sides we get

Multiply both sides by 10.

Therefore, the total number of calls will 363 after 50 minutes since the start of the phone tree.
The correct answer is A.
Step-by-step explanation:
According to the power rule for logarithms, the logarithm of a power can be simplified by writing it as the product of the exponent multiplied by the logarithm of the base.
For example;

Hence in this case,

Learn More
Logarithms : brainly.com/question/11535704
Keyword : log
#LearnwithBrainly
The numbers are: "9" and "12" .
___________________________________
Explanation:
___________________________________
Let: "x" be the "first number" ; AND:
Let: "y" be the "second number" .
___________________________________
From the question/problem, we are given:
___________________________________
2x + 5y = 78 ; → "the first equation" ; AND:
5x − y = 33 ; → "the second equation" .
____________________________________
From "the second equation" ; which is:
" 5x − y = 33" ;
→ Add "y" to EACH side of the equation;
5x − y + y = 33 + y ;
to get: 5x = 33 + y ;
Now, subtract: "33" from each side of the equation; to isolate "y" on one side of the equation ; and to solve for "y" (in term of "x");
5x − 33 = 33 + y − 33 ;
to get: " 5x − 33 = y " ; ↔ " y = 5x − 33 " .
_____________________________________________
Note: We choose "the second equation"; because "the second equation"; that is; "5x − y = 33" ; already has a "y" value with no "coefficient" ; & it is easier to solve for one of our numbers (variables); that is, "x" or "y"; in terms of the other one; & then substitute that value into "the first equation".
____________________________________________________
Now, let us take "the first equation" ; which is:
" 2x + 5y = 78 " ;
_______________________________________
We have our obtained value; " y = 5x − 33 " .
_______________________________________
We shall take our obtained value for "y" ; which is: "(5x− 33") ; and plug this value into the "y" value in the "first equation"; and solve for "x" ;
________________________________________________
Take the "first equation":
________________________________________________
→ " 2x + 5y = 78 " ; and write as:
________________________________________________
→ " 2x + 5(5x − 33) = 78 " ;
________________________________________________
Note the "distributive property of multiplication" :
________________________________________________
a(b + c) = ab + ac ; AND:
a(b − c) = ab − ac .
________________________________________________
So; using the "distributive property of multiplication:
→ +5(5x − 33) = (5*5x) − (5*33) = +25x − 165 .
___________________________________________________
So we can rewrite our equation:
→ " 2x + 5(5x − 33) = 78 " ;
by substituting the: "+ 5(5x − 33) " ; with: "+25x − 165" ; as follows:
_____________________________________________________
→ " 2x + 25x − 165 = 78 " ;
_____________________________________________________
→ Now, combine the "like terms" on the "left-hand side" of the equation:
+2x + 25x = +27x ;
Note: There are no "like terms" on the "right-hand side" of the equation.
_____________________________________________________
→ Rewrite the equation as:
_____________________________________________________
→ " 27x − 165 = 78 " ;
Now, add "165" to EACH SIDE of the equation; as follows:
→ 27x − 165 + 165 = 78 + 165 ;
→ to get: 27x = 243 ;
_____________________________________________________
Now, divide EACH SIDE of the equation by "27" ; to isolate "x" on one side of the equation ; and to solve for "x" ;
_____________________________________________________
27x / 27 = 243 / 27 ;
→ to get: x = 9 ; which is "the first number" .
_____________________________________________________
Now; Let's go back to our "first equation" and "second equation" to solve for "y" (our "second number"):
2x + 5y = 78 ; (first equation);
5x − y = 33 ; (second equation);
______________________________
Start with our "second equation"; to solve for "y"; plug in "9" for "x" ;
→ 5(9) − y = 33 ;
45 − y = 33;
Add "y" to each side of the equation:
45 − y + y = 33 + y ; to get:
45 = 33 + y ;
↔ y + 33 = 45 ; Subtract "33" from each side of the equation; to isolate "y" on one side of the equation ; & to solve for "y" ;
→ y + 33 − 33 = 45 − 33 ;
to get: y = 12 ;
So; x = 9 ; and y = 12 . The numbers are: "9" and "12" .
____________________________________________
To check our work:
_______________________
1) Let us plug these values into the original "second equation" ; to see if the equation holds true (with "x = 9" ; and "y = 12") ;
→ 5x − y = 33 ; → 5(9) − 12 =? 33 ?? ; → 45 − 12 =? 33 ?? ; Yes!
________________________
2) Let us plug these values into the original "second equation" ; to see if the equation holds true (with "x = 9" ; and "y = 12") ;
→ 2x + 5y = 78 ; → 2(9) + 5(12) =? 78?? ; → 18 + 60 =? 78?? ; Yes!
_____________________________________
So, these answers do make sense!
______________________________________
There are 8.04672 for 5 kilo. by length <span />