Answer:
2x + 3y + 5z = 9
Step-by-step explanation:
The normal defines all the planes perpendicular to that vector. To isolate to a single plane, just apply the known point.
ax + by + cz = d
2x + 3y + 5z = d
2(1) + 3(-1) + 5(2) = 9
Answer:
Step-by-step explanation:
Surface area = 4*lateral faces + 2*bases
- A = 4*30 + 2*25 = 170 ft²
Answer:
it 5.5⋅10−^8m
Step-by-step explanation:
Unless I'm missing something important here, you can find the difference between the two wavelengths by subtracting one from the other. Since you're interested in finding how much longer the wavelength associated with the orange light is, subtract the wavelength of the green light from the wavelength of the orange light. You know that the two measured wavelengths are 6.15 ⋅ 10 − 7 m → orange light 5.6 ⋅ 10 − 7 m → green light Therefore, the difference between the two wavelengths will be Δ wavelength = 6.15 ⋅ 10 − 7 m − 5.6 ⋅ 10 − 7 m = 5.5 ⋅ 10 − 8 m
C : B = D : E
6 : 5 = D : 3
D = 3.6
Answer:
Arc length ![=\int_0^{\pi} \sqrt{1+[(4.5sin(4.5x))]^2}\ dx](https://tex.z-dn.net/?f=%3D%5Cint_0%5E%7B%5Cpi%7D%20%5Csqrt%7B1%2B%5B%284.5sin%284.5x%29%29%5D%5E2%7D%5C%20dx)
Arc length 
Step-by-step explanation:
The arc length of the curve is given by ![\int_a^b \sqrt{1+[f'(x)]^2}\ dx](https://tex.z-dn.net/?f=%5Cint_a%5Eb%20%5Csqrt%7B1%2B%5Bf%27%28x%29%5D%5E2%7D%5C%20dx)
Here,
interval ![[0, \pi]](https://tex.z-dn.net/?f=%5B0%2C%20%5Cpi%5D)
Now, 
![f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}\left ( [-cos(t)]_0^{4.5x} \right )](https://tex.z-dn.net/?f=f%27%28x%29%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%7D%5Cleft%20%28%20%5B-cos%28t%29%5D_0%5E%7B4.5x%7D%20%5Cright%20%29)


Now, the arc length is ![\int_0^{\pi} \sqrt{1+[f'(x)]^2}\ dx](https://tex.z-dn.net/?f=%5Cint_0%5E%7B%5Cpi%7D%20%5Csqrt%7B1%2B%5Bf%27%28x%29%5D%5E2%7D%5C%20dx)
![\int_0^{\pi} \sqrt{1+[(4.5sin(4.5x))]^2}\ dx](https://tex.z-dn.net/?f=%5Cint_0%5E%7B%5Cpi%7D%20%5Csqrt%7B1%2B%5B%284.5sin%284.5x%29%29%5D%5E2%7D%5C%20dx)
After solving, Arc length 