The answer to that problem is 4. 4*4*4*4=(4*4)*(4*4)=16*16=256. I hope this helped!
A cause you just gotta think about it and realize you got it
The function, as presented here, is ambiguous in terms of what's being deivded by what. For the sake of example, I will assume that you meant
3x+5a
<span> f(x)= ------------
</span> x^2-a^2
You are saying that the derivative of this function is 0 when x=12. Let's differentiate f(x) with respect to x and then let x = 12:
(x^2-a^2)(3) -(3x+5a)(2x)
f '(x) = ------------------------------------- = 0 when x = 12
[x^2-a^2]^2
(144-a^2)(3) - (36+5a)(24)
------------------------------------ = 0
[ ]^2
Simplifying,
(144-a^2) - 8(36+5a) = 0
144 - a^2 - 288 - 40a = 0
This can be rewritten as a quadratic in standard form:
-a^2 - 40a - 144 = 0, or a^2 + 40a + 144 = 0.
Solve for a by completing the square:
a^2 + 40a + 20^2 - 20^2 + 144 = 0
(a+20)^2 = 400 - 144 = 156
Then a+20 = sqrt[6(26)] = sqrt[6(2)(13)] = 4(3)(13)= 2sqrt(39)
Finally, a = -20 plus or minus 2sqrt(39)
You must check both answers by subst. into the original equation. Only if the result(s) is(are) true is your solution (value of a) correct.
Answer:
58593
Step-by-step explanation:
The sum to n terms of a geometric sequence is
= 
where a is the first term and r the common ratio
r = 15 ÷ 3 = 75 ÷ 15 = 5 and a = 3, hence
= 
=
=
= 58593
Answer:
A. horizontal reflection
Step-by-step explanation:
Given:


To identify the type of transformation.
Solution:
On close observation of the functions we find the that sign of
has changed in
with other terms being constant.
<em>Thus, the transformation statement can be given as:</em>

As:


The transformation
describes horizontal reflection of function across the y-axis.
Thus,
is horizontally reflected across y-axis to get
.