1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MaRussiya [10]
3 years ago
5

PLEASE HELP QUICKLY,15 POINTS AND WILL

Mathematics
1 answer:
zepelin [54]3 years ago
7 0

Answer:

x=26

Step-by-step explanation:

The sum of the angles of a triangle add to 180 degrees

(2x-5)° +(4x-1)° + 30° = 180

Combine like terms

6x +24 =180

Subtract 24 from each side

6x+24-24 =180-24

6x = 156

Divide by 6

6x/6 =156/6

x =26

You might be interested in
What is the answer (×+3) (×+7)
kap26 [50]
x^{2} +10x+21. Use FOIL to do this.

:)
6 0
4 years ago
Read 2 more answers
When a cylindrical tank is filled with water at a rate of 22 cubic meters per hour, the level of water in the tank rises at a ra
Sergeu [11.5K]

Answer:

r=\sqrt{10}\text{ m}

Step-by-step explanation:

We have been given that when a cylindrical tank is filled with water at a rate of 22 cubic meters per hour, the level of water in the tank rises at a rate of 0.7 meters per hour. We are asked to find the approximate radius of tank in meters.

We will use volume of cylinder formula to solve our given problem as:

V=\pi r^2h, where,

r = Radius,

h = Height of cylinder.

Since the level of water in the tank rises at a rate of 0.7 meters per hour, so height of cylinder would be h = 0.7 meters at V=22\text{ m}^3.

Upon substituting these values in above formula, we will get:

22\text{ m}^3=\frac{22}{7}\cdot r^2(0.7\text{ m})

22\text{ m}^3=\frac{22}{10}\cdot r^2\text{ m}

\frac{10}{22}\cdot\frac{22\text{ m}^3}{\text{m}}=r^2

r^2=\frac{10}{22}\cdot\frac{22\text{ m}^3}{\text{m}}

r^2=10\text{ m}^2

Now, we will take positive square root of both sides as radius cannot be negative.

\sqrt{r^2}=\sqrt{10\text{ m}^2}

r=\sqrt{10}\text{ m}

Therefore, radius of tank would be approximately square root of 10 m.

5 0
3 years ago
PLEASE HELP ME AND MY FRIEND NEED THIS QUESTION ANSWERED PLEASE HELP
Bas_tet [7]

Answer:

V_{cone} =65.94\: cm^3

Step-by-step explanation:

  • Height of cone (h) = 7 cm

  • Base radius (r) = 3 cm

  • Formula for Volume of cone is given as:

  • V_{cone} = \frac{1}{3}\pi r^2h

  • Plugging the values of h and r in the above formula, we find:

  • V_{cone} = \frac{1}{3}(3.14) (3)^2(7)

  • \implies V_{cone} = \frac{1}{\cancel 3}(3.14) (\cancel 9)(7)

  • \implies V_{cone} = (3.14) (3)(7)

  • \implies V_{cone} =65.94\: cm^3
7 0
2 years ago
In circle H with m \angle GHJ= 104m∠GHJ=104 and GH=15GH=15 units, find the length of arc GJ. Round to the nearest hundredth.
AlladinOne [14]

Answer: GJ= 27.23

i dont know how to explain this lol sorry but that answer is right

6 0
3 years ago
Given two points P(sinθ+2, tanθ-2) and Q(4sin²θ+4sinθcosθ+2acosθ, 3sinθ-2cosθ+a). Find constant "a" and the corresponding value
vodomira [7]

Answer:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1, \frac{\sqrt{3}}{2}  - 1

Step-by-step explanation:

we are given two <u>coincident</u><u> points</u>

\displaystyle  P( \sin(θ)+2,  \tan(θ)-2)   \: \text{and } \\  \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

since they are coincident points

\rm \displaystyle  P( \sin(θ)+2,  \tan(θ)-2)    = \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ )\cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

By order pair we obtain:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ) =  \sin( \theta)   + 2 \\   \\  \displaystyle 3 \sin( \theta)  - 2  \cos( \theta)  + a =  \tan( \theta)  - 2\end{cases}

now we end up with a simultaneous equation as we have two variables

to figure out the simultaneous equation we can consider using <u>substitution</u><u> method</u>

to do so, make a the subject of the equation.therefore from the second equation we acquire:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sinθ \cos(θ)+2a \cos(θ )=  \sin( \theta)   + 2 \\   \\  \boxed{\displaystyle  a =  \tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta) } \end{cases}

now substitute:

\rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2 \cos(θ) \{\tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta)   \}=  \sin( \theta)   + 2

distribute:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ)+4 \sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  - 6 \sin( \theta) \cos( \theta)    + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

collect like terms:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)     + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

rearrange:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) + 4 \cos ^{2} ( \theta)  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) + =  \sin( \theta)   + 2

by <em>Pythagorean</em><em> theorem</em> we obtain:

\rm\displaystyle \displaystyle 4  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)   + 2

cancel 4 from both sides:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)    - 2

move right hand side expression to left hand side and change its sign:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+\sin(θ ) - 4\cos( \theta) + 2  =  0

factor out sin:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1) - 4\cos( \theta) + 2  =  0

factor out 2:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1)  + 2(- 2\cos( \theta) + 1 ) =  0

group:

\rm\displaystyle \displaystyle ( \sin (θ)   + 2)(- 2 \cos(θ)+1)  =  0

factor out -1:

\rm\displaystyle \displaystyle -  ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

divide both sides by -1:

\rm\displaystyle \displaystyle   ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

by <em>Zero</em><em> product</em><em> </em><em>property</em> we acquire:

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)   + 2 = 0 \\ \displaystyle2 \cos(θ) - 1=  0 \end{cases}

cancel 2 from the first equation and add 1 to the second equation since -1≤sinθ≤1 the first equation is false for any value of theta

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)     \neq  - 2 \\ \displaystyle2 \cos(θ) =  1\end{cases}

divide both sides by 2:

\rm\displaystyle \displaystyle \displaystyle \cos(θ) =   \frac{1}{2}

by unit circle we get:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

so when θ is 60° a is:

\rm \displaystyle a =  \tan(  {60}^{ \circ} )  - 2 - 3 \sin(  {60}^{ \circ} )   +  2  \cos(  {60}^{ \circ} )

recall unit circle:

\rm \displaystyle a =   \sqrt{3}  - 2 -  \frac{ 3\sqrt{3} }{2}   +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1

when θ is 300°

\rm \displaystyle a =  \tan(  {300}^{ \circ} )  - 2 - 3 \sin(  {300}^{ \circ} )   +  2  \cos(  {300}^{ \circ} )

remember unit circle:

\rm \displaystyle a =  -  \sqrt{3}   - 2  +   \frac{3\sqrt{ 3} }{2}  +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a = \frac{ \sqrt{3} }{2} - 1

and we are done!

disclaimer: also refer the attachment I did it first before answering the question

5 0
3 years ago
Other questions:
  • Math question down below
    5·2 answers
  • Can you draw a square with a perimeter of 20 units explain why or why not
    10·2 answers
  • A rectangular safe can hold 5184 cubic inches. Gold bars that are 3 inches by 6 inches by 2 inches fit to completely fill the sa
    6·1 answer
  • A linear function is given by formula y= 1 2 x−2. d State the slope of the line.
    8·1 answer
  • Is -101 any rational or irrational number
    10·2 answers
  • What do black guys like in girls?
    11·2 answers
  • Tan theta is equal to 2- cos theta find the value of sin theta​
    5·1 answer
  • A model rocket is launched from a platform 12 meters high at a speed of 35 meters per second. Its height h can be modeled by the
    11·1 answer
  • What is the measure of angle 1?
    8·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Csmall%7B%5Ccolorbox%7Bblack%7D%7B%5Cred%7B%5Cboxed%7B%7B%20%5Csf%5C%3A%20%5Ccolor%7Bhotpink
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!