Answer:
y = x tan θ - (g / 2v₀² cos² θ) x²
Explanation:
An equation is called a general formula that relates the position on the x-axis and the height on the body's axis.
Let's write the position on each axis
X axis. No acceleration
x = v₀ₓ t
Y Axis. There is the acceleration of gravity
y =
t - ½ g t²
Let's clear the time in the first equation and substitute in the second
y = v₀ sin θ (x / v₀ₓ) - ½ g (x / v₀ₓ)²
y = v₀ sin θ / v₀ cos θ x - ½ g x² / v₀² cos² θ
y = x tan θ - (g / 2v₀² cos² θ) x²
This is the trajectory equation in projectile launching
Energy Produced by water and heatfrom the inner core of the earth of the earth
Answer:
t = √2y/g
Explanation:
This is a projectile launch exercise
a) The vertical velocity in the initial instants (
= 0) zero, so let's use the equation
y =
t -1/2 g t²
y= - ½ g t²
t = √2y/g
b) Let's use this time and the horizontal displacement equation, because the constant horizontal velocity
x = vox t
x = v₀ₓ √2y/g
c) Speeds before touching the ground
vₓ = vox = constant
=
- gt
= 0 - g √2y/g
= - √2gy
tan θ = Vy / vx
θ = tan⁻¹ (vy / vx)
θ = tan⁻¹ (√2gy / vox)
d) The projectile is higher than the cliff because it is a horizontal launch
Answer:
60m/s
Explanation:
initial energy = final energy
g.p.e = k.e
k.e = 0.5 × mass × velocity²
g.p.e = 990000J as per Question
990000Nm = 0.5 × 550 × V²
V² = 3600
V = 60m/s
Answer:All planets move in elliptical orbits, with the sun at one focus. This is one of Kepler's laws. The elliptical shape of the orbit is a result of the inverse square force of gravity. The eccentricity of the ellipse is greatly exaggerated here.
so it is true
Explanation: