<h3>
Answer: 12 inches</h3>
=============================================================
Explanation:
Notice the double tickmarks on segments WZ and ZY. This tells us the two segments are the same length. Let's say they are m units long, where m is a placeholder for a positive number.
That would mean m+m = 2m represents the length of segment WY, but that's equal to 10 as the diagram shows. We have 2m = 10 lead to m = 5 after dividing both sides by 2.
We've shown that WZ and ZY are 5 units long each. In short, we just cut that length of 10 in half.
-----------------------------------
Let's focus on triangle XYZ. This is a right triangle with legs XZ = unknown and ZY = 5. The hypotenuse is XY = 13.
We'll use the pythagorean theorem to find XZ
a^2 + b^2 = c^2
(XZ)^2 + (ZY)^2 = (XY)^2
(XZ)^2 + (5)^2 = (13)^2
(XZ)^2 + 25 = 169
(XZ)^2 = 169-25
(XZ)^2 = 144
XZ = sqrt(144)
XZ = 12
Segment XZ is 12 inches long.
The correct choice is B
x is greater than equals to -4.25
The maximum volume of the box is 40√(10/27) cu in.
Here we see that volume is to be maximized
The surface area of the box is 40 sq in
Since the top lid is open, the surface area will be
lb + 2lh + 2bh = 40
Now, the length is equal to the breadth.
Let them be x in
Hence,
x² + 2xh + 2xh = 40
or, 4xh = 40 - x²
or, h = 10/x - x/4
Let f(x) = volume of the box
= lbh
Hence,
f(x) = x²(10/x - x/4)
= 10x - x³/4
differentiating with respect to x and equating it to 0 gives us
f'(x) = 10 - 3x²/4 = 0
or, 3x²/4 = 10
or, x² = 40/3
Hence x will be equal to 2√(10/3)
Now to check whether this value of x will give us the max volume, we will find
f"(2√(10/3))
f"(x) = -3x/2
hence,
f"(2√(10/3)) = -3√(10/3)
Since the above value is negative, volume is maximum for x = 2√(10/3)
Hence volume
= 10 X 2√(10/3) - [2√(10/3)]³/4
= 2√(10/3) [10 - 10/3]
= 2√(10/3) X 20/3
= 40√(10/27) cu in
To learn more about Maximization visit
brainly.com/question/14682292
#SPJ4
Complete Question
(Image Attached)
Answer:
true
Step-by-step explanation: