Use the equation and type the ordered-pairs. y = log 3 x {(1/3, a0), (1, a1), (3, a2), (9, a3), (27, a4), (81, a5)
vagabundo [1.1K]
Answer:
Considering the given equation 
And the ordered pairs in the format 
I don't know if it is log of base 3 or 10, but I will assume it is 3.
For 


So the ordered pair will be 
For 


So the ordered pair will be 
For 


So the ordered pair will be 
For 


So the ordered pair will be 
For 


So the ordered pair will be 
For 


So the ordered pair will be 
The Law of Cosines features the 3 side lengths of a triangle, plus the measure of the angle opposite one of those sides.
We want angle x, which is opposite the side of length 39.
Then: a^2 = b^2 - 2ab cos C becomes 39^2 = 36^2 + 59^2 - 2(36)(59)cos x
or 1521 = 3481 + 1296 - 2(36)(59) cos x
Subtract (3481+1296) from both sides: 1521 - 4777 = -4248cos x
-3256 = -4248cos x
-3256
Then: cosx = --------------- = 0.766
-4248
Solving for x: x = arccos -0.766 = 0.698 radian, or 40 degrees (answer)
Answer:259
Step-by-step explanation:
Its summation of 6^i-1 for values of I = 1,2,3 and 4
= 6^0 + 6^1 +6^2 +6^3
=259
Answer:

Step-by-step explanation:
f(x) = 9x³ + 2x² - 5x + 4; g(x)=5x³ -7x + 4
Step 1. Calculate the difference between the functions
(a) Write the two functions, one above the other, in decreasing order of exponents.
ƒ(x) = 9x³ + 2x² - 5x + 4
g(x) = 5x³ - 7x + 4
(b) Create a subtraction problem using the two functions
ƒ(x) = 9x³ + 2x² - 5x + 4
-g(x) = <u>-(5x³ - 7x + 4)
</u>
ƒ(x) -g(x)=
(c). Subtract terms with the same exponent of x
ƒ(x) = 9x³ + 2x² - 5x + 4
-g(x) = <u>-(5x³ - 7x + 4)
</u>
ƒ(x) -g(x) = 4x³ + 2x² + 2x
Step 2. Factor the expression
y = 4x³ + 2x² + 2x
Factor 2x from each term
y = 2x(2x² + x + 1)

Answer:
x+5/30 = 16/20
20x+100=480
20x=380
x=19
Step-by-step explanation:
x+5/30 = 16/20
20x+100=480
20x=380
x=19