Step-by-step explanation:
do nt report please

mark him brainliest
You answer would be c what colors should Kelly....

so we know
has roots equal to the cube roots of 1, not including
itself, which are

Any polynomial of the form
is divisible by
if both
and
(this is the polynomial remainder theorem).
This means

But since
is a root to
, it follows that



and since
, we have
so that

From here, notice that if
for some integer
, then


which is to say,
is divisible by
for all
in the given range that are *not* multiples of 3, i.e. the integers
and
for
.
Since 2005 = 668*3 + 1, it follows that there are
integers
such that
.
Finally,
.
Answer:
<em>Correct Answer: D</em>
Step-by-step explanation:
<em>Geometric Sequence
</em>
We can find each term of a geometric sequence if we have the general formula by replacing n for any integer number in the given domain. n must be an integer because it's the position where the term is located. For example,
is the term located in position 2, so n cannot be irrational or decimal. The sequence provided is

The variable n starts from 0 and has no limit, so the domain is a set of integers

