Step-by-step explanation:
The domain of a function is all possible input x-values, and the range of function is all possible output y-values.
The domain of this function is (-6, 3) and the range is (-5, 5). Those are written like this:
D: (-6, 3)
R: (-5, 5)
I suppose I'll pick the first one: "The domain is (-6, -1)." This is wrong as the domain on the graph shown is (-6, 3).
Answer:
(a) x = -2y
(c) 3x - 2y = 0
Step-by-step explanation:
You can tell if an equation is a direct variation equation if it can be written in the format y = kx.
Note that there is no addition and subtraction in this equation.
Let's put these equations in the form y = kx.
(a) x = -2y
- y = x/-2 → y = -1/2x
- This is equivalent to multiplying x by -1/2, so this is an example of direct variation.
(b) x + 2y = 12
- 2y = 12 - x
- y = 6 - 1/2x
- This is not in the form y = kx since we are adding 6 to -1/2x. Therefore, this is <u>NOT</u> an example of direct variation.
(c) 3x - 2y = 0
- -2y = -3x
- y = 3/2x
- This follows the format of y = kx, so it is an example of direct variation.
(d) 5x² + y = 0
- y = -5x²
- This is not in the form of y = kx, so it is <u>NOT</u> an example of direct variation.
(e) y = 0.3x + 1.6
- 1.6 is being added to 0.3x, so it is <u>NOT</u> an example of direct variation.
(f) y - 2 = x
- y = x + 2
- 2 is being added to x, so it is <u>NOT</u> an example of direct variation.
The following equations are examples of direct variation:
Answer:
[-1,5]
Step-by-step explanation:
all reals between -1 and 5
Which property of multiplication is shown ?
11 × 1