Step-by-step explanation:
Aight, so the same intercept
![- 2y = - 4 - x = = = > \\ y = \frac{1}{2} x + 2](https://tex.z-dn.net/?f=%20-%202y%20%3D%20%20-%204%20-%20x%20%3D%20%20%3D%20%20%3D%20%20%3E%20%20%5C%5C%20y%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20x%20%2B%202)
m=½
![y = \frac{1}{2} x + b = = = > \\ now \: let \: us \: replace \: the \: point \\ 1 = \frac{1}{2} ( - 3) + b = = = > \\ \frac{5}{2} = b](https://tex.z-dn.net/?f=y%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20x%20%2B%20b%20%3D%20%20%3D%20%20%3D%20%20%3E%20%20%5C%5C%20now%20%5C%3A%20let%20%5C%3A%20us%20%5C%3A%20replace%20%5C%3A%20the%20%5C%3A%20point%20%5C%5C%201%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%28%20-%203%29%20%2B%20b%20%3D%20%20%3D%20%20%3D%20%20%3E%20%20%5C%5C%20%20%5Cfrac%7B5%7D%7B2%7D%20%20%3D%20b)
soooo
![y = \frac{1}{2} x + \frac{5}{2}](https://tex.z-dn.net/?f=y%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20x%20%2B%20%20%5Cfrac%7B5%7D%7B2%7D%20)
Answer:
4.1 inches
<u>I would appreciate Brainliest, but no worries.</u>
I personally use y2-y1 over x2-x1 because it's simple. Plot two y values and two x values. The first ones you plotted are x1 and y1, the others are x2 y2. Now subtract y2-y1 and x2-x1. Afterwards, divide the y value by the x value, that will give you slope.
The equation of the line parallel to 5x+2y=12 and passes through the point (-2, 4) is equal to y= -5/2x - 1