The large number of areas covered by the chemical energetics can be explained by the different forms in which chemical energy can be released: heat and combustion work, electrical energy in electrochemistry, radiant energy in chemiluminescent systems.
The chemical energy provided by a reaction reflects the energy balance associated with the electronic modifications suffered by the species involved.
From an energy point of view, a chemical reaction between molecules can be schematized in two stages. The first requires a supply of energy and corresponds to the rupture of the bonds of the reactant molecules with release of the atoms which constitute them.
The second releases energy and concerns the creation, by recombination of these atoms, of new bonds entering the structure of the reaction molecules.
As a general rule, the energy released in the second stage is greater than the first. We are talking about exothermic reaction. The difference between these two energies (reaction enthalpy) measures the amount of chemical energy transferred to the external environment.
It is conceivable that this quantity translates, not only the number, but also the strength of the connections involved.
In geology, a graded bed is one characterized by a systematic change in grain or clast size from one side of the bed to the other. Most commonly this takes the form of normal grading, with coarser sediments at the base, which grade upward into progressively finer onesI just learned about this in our rocks and minerals unit for science,
One half of a duplicated chromosome is called a sister chromatid
Not true, certain chemical transmitters stimulate certain receptors
Answer:
<em>The correct option is C) Plants</em>
Explanation:
Option A is false because the cell cannot be an animal cell. This is because an animal cell does not possess a cell wall.
Option B is false because the cell cannot be a bacterial cell. This is because a bacterial cell does not have a nucleus. Their genetic material is dispersed inside the cytoplasm.
Option C is correct because all the organelles, a cytoskeleton, mitochondrion, nucleus, cell wall, and ribosomes, are present inside the plant cells.