1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnom [1K]
3 years ago
13

What are the first three terms of the sequence defined by the following equation?

Mathematics
2 answers:
natali 33 [55]3 years ago
6 0

Answer:

B: 41, 45,51

Step-by-step explanation:

an=41 +(n-1)5

  • an: nth term
  • 41: first term in the sequence
  • (n-1): position of term in the sequence, minus 1
  • 5: common difference

To find 1st term plug in 1 for n,

an=41+(1-1)5 ->41

For 2nd term

an=41+(2-1)5 ->46

3rd Term

an=41+(3-1)5 -> 51

Hope this helps.


Tju [1.3M]3 years ago
4 0

Answer:

B.

Step-by-step explanation:


You might be interested in
A surveyor measures the angle of elevation to a point on a mountain, that is 6 miles away, to be 15 degrees. The vertical change
cricket20 [7]
You can draw a right triangle with the informatio.

The vertical change in elevation (unknown) is the opposed leg to the angle 15°

The distance from the surveyor to the point vertically below the point on the mountain is the adjacent leg = 6 miles.

Then tan(15°) = x / 6 => x = 6tan(15) = 1.61 miles

Answer: 1.61 miles
6 0
2 years ago
Read 2 more answers
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
What’s a coefficient
My name is Ann [436]

Answer:

The number before a variable. For example, 4x. 4 would be the coefficient, and x would be the variable.

5 0
3 years ago
Read 2 more answers
Can you please help me with this problem
vagabundo [1.1K]
\bf \begin{cases}&#10;\textit{area of a circle}=\pi r^2&#10;\\ \quad \\&#10;circumference=2\pi r&#10;\end{cases}&#10;\\ \quad \\&#10;&#10;12.56=\pi r^2\implies \cfrac{12.56}{\pi }=r^2\implies \sqrt{\cfrac{12.56}{\pi }}=\boxed{r}&#10;\\ \quad \\&#10;thus&#10;\\ \quad \\&#10;circumference=2\pi \boxed{r}\implies 2\pi \boxed{\sqrt{\cfrac{12.56}{\pi }}}
8 0
3 years ago
Can anyone help me with 16,18,and 19 please
jenyasd209 [6]
16-A 18-B 19-D (not 100% sure on 16)
7 0
3 years ago
Other questions:
  • A recipe for one batch of cookies uses 23 cup of oil. Edward has 114 cups of oil. Does he have enough oil to make 2 batches of c
    10·1 answer
  • The sum of the measures of the angles of all triangles is 180 degrees. If one angle of the triangle measure 45 degrees. The meas
    13·2 answers
  • Find the quotient −40÷20.
    9·2 answers
  • Can some one help me with this
    14·2 answers
  • Find the difference of the two functions
    10·2 answers
  • PLEASE HELP ASAP GEOMETRY 20 PTS REAL ANSWERS ONLY
    13·1 answer
  • Literally anyone HELP
    5·1 answer
  • Help Please! :) Fast as you can!
    10·2 answers
  • Multiplying Polynomials Distributive property<br> 4a^2(a^5-2a^4+a)
    9·1 answer
  • Given the functions a(x) = 3x - 12 and b(x) = x-9, solve a[b(x)].
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!