Corrected Question
The volume of air inside a rubber ball with radius r can be found using the function V(r) = four-thirds pi r cubed. What does V(5/7) represent?
Answer:
(B)the volume of the rubber ball when the radius equals five-sevenths feet
Step-by-step explanation:
The Volume of a sphere of radius r can be found using the formula:

Therefore comparing the expression:
with V(r):

Thus,
is the volume of a ball of radius
feet.
The correct option is B.
Closest together means that the difference between the high and the low is the smallest.
Atlanta:
106 - -12 = 118
Boston:
103 - -19 = 122
Chicago:
100 - -32 = 132
Dallas:
111 - -8 = 119
The city that has the record high and low closest together is A) Atlanta.
Hope this helps!! :)
Step-by-step explanation:
(a)
Using the definition given from the problem
![f(A) = \{x^2 \, : \, x \in [0,2]\} = [0,4]\\f(B) = \{x^2 \, : \, x \in [1,4]\} = [1,16]\\f(A) \cap f(B) = [1,4] = f(A \cap B)\\](https://tex.z-dn.net/?f=f%28A%29%20%3D%20%5C%7Bx%5E2%20%20%5C%2C%20%3A%20%5C%2C%20x%20%5Cin%20%5B0%2C2%5D%5C%7D%20%3D%20%5B0%2C4%5D%5C%5Cf%28B%29%20%3D%20%5C%7Bx%5E2%20%20%5C%2C%20%3A%20%5C%2C%20x%20%5Cin%20%5B1%2C4%5D%5C%7D%20%3D%20%5B1%2C16%5D%5C%5Cf%28A%29%20%5Ccap%20f%28B%29%20%3D%20%5B1%2C4%5D%20%20%3D%20f%28A%20%5Ccap%20B%29%5C%5C)
Therefore it is true for intersection. Now for union, we have that
![A \cup B = [0,4]\\f(A\cup B ) = [0,16]\\f(A) = [0,4]\\f(B)= [1,16]\\f(A) \cup f(B) = [0,16]](https://tex.z-dn.net/?f=A%20%5Ccup%20B%20%3D%20%5B0%2C4%5D%5C%5Cf%28A%5Ccup%20B%20%29%20%3D%20%5B0%2C16%5D%5C%5Cf%28A%29%20%3D%20%5B0%2C4%5D%5C%5Cf%28B%29%3D%20%5B1%2C16%5D%5C%5Cf%28A%29%20%5Ccup%20f%28B%29%20%3D%20%5B0%2C16%5D)
Therefore, for this case, it would be true that
.
(b)
1 is not a set.
(c)
To begin with

Therefore

Now, given an element of
it will belong to both sets, therefore it also belongs to
, and you would have that
, therefore
.
(d)
To begin with
, therefore

Cosine is
.
Apply the equation:

B is the adjacent side so
cosine is:
Cos(t) = 5/2
Have a great day,
And I hope this helps you!
Answer:
13 ft/s
Step-by-step explanation:
t seconds after the boy passes under the balloon the distance between them is ...
d = √((15t)² +(45+5t)²) = √(250t² +450t +2025)
The rate of change of d with respect to t is ...
dd/dt = (500t +450)/(2√(250t² +450t +2025)) = (50t +45)/√(10t² +18t +81)
At t=3, this derivative evaluates to ...
dd/dt = (50·3 +45)/√(90+54+81) = 195/15 = 13
The distance between the boy and the balloon is increasing at the rate of 13 ft per second.
_____
The boy is moving horizontally at 15 ft/s, so his position relative to the spot under the balloon is 15t feet after t seconds.
The balloon starts at 45 feet above the boy and is moving upward at 5 ft/s, so its vertical distance from the spot under the balloon is 45+5t feet after t seconds.
The straight-line distance between the boy and the balloon is found as the hypotenuse of a right triangle with legs 15t and (45+5t). Using the Pythagorean theorem, that distance is ...
d = √((15t)² + (45+5t)²)