Answer: A) .1587
Step-by-step explanation:
Given : The amount of soda a dispensing machine pours into a 12-ounce can of soda follows a normal distribution with a mean of 12.30 ounces and a standard deviation of 0.20 ounce.
i.e.
and 
Let x denotes the amount of soda in any can.
Every can that has more than 12.50 ounces of soda poured into it must go through a special cleaning process before it can be sold.
Then, the probability that a randomly selected can will need to go through the mentioned process = probability that a randomly selected can has more than 12.50 ounces of soda poured into it =
![P(x>12.50)=1-P(x\leq12.50)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{12.50-12.30}{0.20})\\\\=1-P(z\leq1)\ \ [\because z=\dfrac{x-\mu}{\sigma}]\\\\=1-0.8413\ \ \ [\text{By z-table}]\\\\=0.1587](https://tex.z-dn.net/?f=P%28x%3E12.50%29%3D1-P%28x%5Cleq12.50%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%5Cdfrac%7B12.50-12.30%7D%7B0.20%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq1%29%5C%20%5C%20%5B%5Cbecause%20z%3D%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5D%5C%5C%5C%5C%3D1-0.8413%5C%20%5C%20%5C%20%5B%5Ctext%7BBy%20z-table%7D%5D%5C%5C%5C%5C%3D0.1587)
Hence, the required probability= A) 0.1587
Answer:
<h2>
62.832 mi.²</h2><h2>
</h2>
Step-by-step explanation:
surface area = 2πrh + 2πr²
where r = 2 miles radius
h = 3 miles
<u>plugin values into the formula</u>
surface area = 2πrh + 2πr²
= 2π (2) 3 + 2π (2)²
= 37.699 + 25.133
= 62.832 mi.²
The answer is 6 one half of the lemonade takes it down to 8 cups left and the minus another two.
What you're doing is just dividing 13/8 to find the decimal (1.625) and then divide that number by 100. 162.5%
your answer is 162.5%
Answer: 340
Step-by-step explanation:
1360 / 4 = 340