If he does three hours, its 9 strips, for four, its 12, six is 18, seven is 21, and nine is 27
------------------------------------------------------------------------------------------
Equation
------------------------------------------------------------------------------------------
y = -3x - 9
------------------------------------------------------------------------------------------
Option 1
------------------------------------------------------------------------------------------
If I substitute x = -9, I should get y = 0
When x = -9
y = -3 (-9) - 9
= 18 (I did not get 0, wrong)
------------------------------------------------------------------------------------------
Option 2
------------------------------------------------------------------------------------------
If I substitute x = -3, I should get y = 0
y = -3(-3) - 9
y = 9 - 9
y = 0 (Yes, I got 0, correct)
------------------------------------------------------------------------------------------
Option 3
------------------------------------------------------------------------------------------
If I substitute x = 0, I should get y = -3
y = -3 (0) - 9
y = 0 - 9
y = -9 (I did not get -3, wrong)
------------------------------------------------------------------------------------------
Option 4
------------------------------------------------------------------------------------------
If I substitute x = 0, I should get y = -9
y = -3 (0) - 9
y = 0 - 9
y = -9 (Yes, I got -9, correct)
------------------------------------------------------------------------------------------
Answer: (-3, 0) and (0, 9) are ordered pairs of the equation (Answer B, D)
------------------------------------------------------------------------------------------
Taking the derivative of 7 times secant of x^3:
We take out 7 as a constant focus on secant (x^3)
To take the derivative, we use the chain rule, taking the derivative of the inside, bringing it out, and then the derivative of the original function. For example:
The derivative of x^3 is 3x^2, and the derivative of secant is tan(x) and sec(x).
Knowing this: secant (x^3) becomes tan(x^3) * sec(x^3) * 3x^2. We transform tan(x^3) into sin(x^3)/cos(x^3) since tan(x) = sin(x)/cos(x). Then secant(x^3) becomes 1/cos(x^3) since the secant is the reciprocal of the cosine.
We then multiply everything together to simplify:
sin(x^3) * 3x^2/ cos(x^3) * cos(x^3) becomes
3x^2 * sin(x^3)/(cos(x^3))^2
and multiplying the constant 7 from the beginning:
7 * 3x^2 = 21x^2, so...
our derivative is 21x^2 * sin(x^3)/(cos(x^3))^2
René Descartes was the person who created analytic geometry and the Cartesian coordinate system