<h3><u>
Answer:</u></h3>
![\boxed{\boxed{\pink{\bf \leadsto Hence \ option\ [d]\ \bigg(y = \dfrac{5}{2}x + 5\bigg) \ is \ correct }}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Cpink%7B%5Cbf%20%5Cleadsto%20Hence%20%5C%20option%5C%20%5Bd%5D%5C%20%5Cbigg%28y%20%3D%20%20%5Cdfrac%7B5%7D%7B2%7Dx%20%2B%205%5Cbigg%29%20%5C%20is%20%5C%20correct%20%20%7D%7D%7D)
<h3>
<u>Step-by-step explanation:</u></h3>
Here from the given graph we can see that the graph the graph intersects x axis at (2,0) and y axis at (5,0). On seeing options it's clear that we have to use Slope intercept form . Which is :-

We know that slope is
. So here slope will be ,
Hence the slope is 5/2 . And here value of c will be 5 since it cuts y axis at (5,0).

<h3>
<u>Hence</u><u> </u><u>option</u><u> </u><u>[</u><u> </u><u>d</u><u> </u><u>]</u><u> </u><u>is</u><u> </u><u>corre</u><u>ct</u><u> </u><u>.</u><u> </u></h3>
Answer:
Check below, please
Step-by-step explanation:
Step-by-step explanation:
1.For which values of x is f '(x) zero? (Enter your answers as a comma-separated list.)
When the derivative of a function is equal to zero, then it occurs when we have either a local minimum or a local maximum point. So for our x-coordinates we can say

2. For which values of x is f '(x) positive?
Whenever we have

then function is increasing. Since if we could start tracing tangent lines over that graph, those tangent lines would point up.

3. For which values of x is f '(x) negative?
On the other hand, every time the function is decreasing its derivative would be negative. The opposite case of the previous explanation. So

4.What do these values mean?

5.(b) For which values of x is f ''(x) zero?
In its inflection points, i.e. when the concavity of the curve changes. Since the function was not provided. There's no way to be precise, but roughly
at x=-4 and x=4
Answer: <em>59.2</em>
Step-by-step explanation:
<em>Take your equation</em>
<em>z2+8y</em>
<em>Now plug in the values given</em>
<em>(12)2+8(4.4)</em>
<em>24+35.2</em>
<em>59.2</em>
Answer:
-16x + 5
Step-by-step explanation:
-8x + 40 -8x - 35
Collect like terms
-8x - 8x + 40 - 35
= - 16x + 5 or 5 - 16x
I hope this was helpful, Please mark as brainliest
Answer:
Step-by-step explanation:
ignore the "at the instant the man is 30 feet away" part, set it as X and the man's shadow as Y.
Similar triangles so we can do
.
Solve for it we get 44y = 6x
Differentiate relative to time t, we get 44y' = 6x'.
change in x (x') is equal to 5. And we get the answer y' =
.
the
ft/sec is the rate of which the length of the shadow is changing. add 5 to it for the rate of the tip of his shadow moving away from the tower.