1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
3 years ago
13

Verify the identity sin (x + ???? / 2) = cos(x) for all real numbers x by using a graph.

Mathematics
1 answer:
Tamiku [17]3 years ago
4 0

Answer:

See proof and explanation below.

Step-by-step explanation:

First we can proof this analitically first using the following property:

sin(a+b) = sin(a) cos(b) + sin (b) cos(a)

If we apply this into our formula we got:

sin (x + \frac{\pi}{2}) = sin (x) cos(\frac{\pi}{2}) + sin (\frac{\pi}{2}) cos (x)

And if we simplify we got:

sin (x + \frac{\pi}{2}) = sin (\frac{\pi}{2}) cos (x)= cos (x)

And that complete the proof.

If we analyze the graphs sin(x) and cos (x) we see that we have a gap between two graphs of \pi/2 as we can see on the figure attached.

When we do the transformation sin(x +\pi/2) we are moving to the left \pi/2 units and then would be exactly the cos function.

You might be interested in
What is 87,200,000 written in scientific notation?
Elan Coil [88]

Answer:

8.72 • 10^7

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
IMMEDIATE HELP PLS THANKS <33
Ksenya-84 [330]
Reflect across the y axis and moved through the translation x = 2
3 0
3 years ago
follow this account for more free points, and please say thanks at my account page, x + 3 = 8 whats x
Musya8 [376]

Answer:

5

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
horace is running a race. he begins to wonder how fast he is running. which unit rates would be reasonable for horace to use to
tresset_1 [31]
<span>Horace is running a race. he begins to wonder how fast he is running.
</span>km/h will best describe how fast he is running.

8 0
3 years ago
Read 2 more answers
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
3 years ago
Other questions:
  • Consider the function represented by 9x+3y= 12 with x as the independent variable. How can this function be written using
    8·1 answer
  • Evaluate the expression.<br><br> - 4(2 - 5)2 + 82
    5·1 answer
  • Find a closed form for the generating function for each of these sequences. (assume a general form for the terms of the sequence
    10·1 answer
  • LMN is a right a right angle triangle angle NLM is 90 degrees PQ is parallel to LM. Area of triangle PNQ is 8cm and area of tria
    14·1 answer
  • ½ is the same as 0.5 and the ratio of _____.
    8·1 answer
  • What is the GCF of the polynomials terms? 14a^3b^4-7ab^7+21a^2b
    12·1 answer
  • The product of 5 and a number n is at least 25.
    13·1 answer
  • Find the average rate of change of the function f(x)=(3/-3x-5), on the interval x ∈ [0,3]
    7·1 answer
  • Donald can type 240 words in 6 minutes. How long will it take him to type a 1000-word essay if he types at the same rate? (Pls I
    10·2 answers
  • Help pls report cards in 2 days
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!