Answer:
Explanation:The four closest to the sun — Mercury, Venus, Earth and Mars — are the terrestrial planets. They have rocky surfaces enclosed by relatively shallow atmospheres.
Answer:
a. All the laboratory equipment given are very basic equipment used in all the laboratories. Name of each equipment is as follows:
- V refers to the tape measure.
- W refers to dropper.
- X refers to an inoculating loop.
- Y refers to a stopwatch.
- Z refers to the microscope.
b. Use of each laboratory equipment identified is:
- Tape measures (V) is used to measure the length of objects or distance in a laboratory.
- Dropper (W) is used to measure unit of drop required to dispensed as one drop or several drops in any experiment.
- Inoculating loop (X) is used by microbiologists to cultivate microbes on plates and retrieving an inoculum from a culture of microorganisms.
- Stopwatch (Y) is used to measure the time of any experiment.
- Microscope (Z) is used to magnify an object to look at it in detail.
Answer:
Average speed = 13.5 m/s
Explanation:
Since the car is running at a speed of 27 m/s and it stops after 3 seconds by applying the brake. Therefore, the initial speed of the 27 m/s and final speed is 0.
Use below formula to find the average speed :
Average speed = (Initial speed + final speed ) / 2
Average speed = (27 + 0 ) / 2
Average speed = 13.5 m/s
The period of a pendulum is given by

since Karachi is near sea level, g is larger than it is on Mt. Everest. That means the pendulum will have a larger period on Mt. Everest than it would in Karachi.
Answer:
ionized particles from the sun.
* interactions in radiation belts.
* the friction of the planet in the solar wind
q = +9 10⁵ C
Explanation:
Due to being made up of matter, the planet Earth has a series of positive and negative charges, in general these charges should be balanced and the net charge of the planet should be zero, but there are several phenomena that introduce unbalanced charges, for example:
* ionized particles from the sun.
* interactions in radiation belts.
* the friction of the planet in the solar wind
This creates that the planet has a net electrical load
We can roughly calculate the charge of the planet
E = k q / r²
q = E r² / k
let's calculate
q = 200 (6.37 10⁶)²/9 10⁹
q = +9 10⁵ C