Answer:
slope = 1 , y- intercept = - 5
Step-by-step explanation:
the equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y-intercept )
y = x - 5 is in this form
with slope m = 1 and y- intercept c = - 5
Answer:
Step-by-step explanation:
B
The value of f[ -4 ] and g°f[-2] are
and 13 respectively.
<h3>What is the value of f[-4] and g°f[-2]?</h3>
Given the function;


- f[ -4 ] = ?
- g°f[ -2 ] = ?
For f[ -4 ], we substitute -4 for every variable x in the function.

For g°f[-2]
g°f[-2] is expressed as g(f(-2))
![g(\frac{3x-2}{x+1}) = (\frac{3x-2}{x+1}) + 5\\\\g(\frac{3x-2}{x+1}) = \frac{3x-2}{x+1} + \frac{5(x+1)}{x+1}\\\\g(\frac{3x-2}{x+1}) = \frac{3x-2+5(x+1)}{x+1}\\\\g(\frac{3x-2}{x+1}) = \frac{8x+3}{x+1}\\\\We\ substitute \ in \ [-2] \\\\g(\frac{3x-2}{x+1}) = \frac{8(-2)+3}{(-2)+1}\\\\g(\frac{3x-2}{x+1}) = \frac{-16+3}{-2+1}\\\\g(\frac{3x-2}{x+1}) = \frac{-13}{-1}\\\\g(\frac{3x-2}{x+1}) = 13](https://tex.z-dn.net/?f=g%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%2B%205%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%20%2B%20%5Cfrac%7B5%28x%2B1%29%7D%7Bx%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B3x-2%2B5%28x%2B1%29%7D%7Bx%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B8x%2B3%7D%7Bx%2B1%7D%5C%5C%5C%5CWe%5C%20substitute%20%5C%20in%20%5C%20%5B-2%5D%20%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B8%28-2%29%2B3%7D%7B%28-2%29%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B-16%2B3%7D%7B-2%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B-13%7D%7B-1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%2013)
Therefore, the value of f[ -4 ] and g°f[-2] are
and 13 respectively.
Learn more about composite functions here: brainly.com/question/20379727
#SPJ1
Answer:
98
Because ya he is js is k ska new aja ska ska
Answer:
a

b

Step-by-step explanation:
From the question we are told that
The mean value is 
The standard deviation is 
Considering question a
The sample size is n = 9
Generally the standard error of the mean is mathematically represented as

=>
=> 
Generally the probability that the sample mean hardness for a random sample of 9 pins is at least 51 is mathematically represented as



=> 
From the z table the area under the normal curve to the left corresponding to 2.5 is

=> 
=> 
Considering question b
The sample size is n = 40
Generally the standard error of the mean is mathematically represented as

=>
=> 
Generally the (approximate) probability that the sample mean hardness for a random sample of 40 pins is at least 51 is mathematically represented as

=> 
=> 
From the z table the area under the normal curve to the left corresponding to 5.2715 and
=> 
So

=> 