Answer:
V'(t) = 
If we know the time, we can plug in the value for "t" in the above derivative and find how much water drained for the given point of t.
Step-by-step explanation:
Given:
V =
, where 0≤t≤40.
Here we have to find the derivative with respect to "t"
We have to use the chain rule to find the derivative.
V'(t) = 
V'(t) = 
When we simplify the above, we get
V'(t) = 
If we know the time, we can plug in the value for "t" and find how much water drained for the given point of t.
5x - y = -4 is the standard form
For a better understanding of the solution provided here, please find the diagram attached.
In the diagram, ABCD is the room.
AC is the diagonal whose length is 18.79 inches.
The length of wall AB is 17 inches.
From the given information, we have to determine the length of the BC, which is depicted a
, because for the room to be a square, the length of the wall AB must be equal to the length of the wall BC.
In order to determine the length of the wall BC, or
, we will have to employ the Pythagoras' Theorem here. Thus:


Thus,
inches
and hence, the given room is not a square.
Answer:
5
Step-by-step explanation:
-2 - (-7)
you have to do the opposite of the sign and switch the last number from neg to pos
Answer:
1. Isolate
2. Closed
3. Reversed
If you have more problems with things similar to this, I recommend this website, it gives a detailed description on how to solve the equations:
https://www.mathsisfun.com/algebra/inequality-solving.html