To get days from minutes, you should get to hours because the calculations are ten times easier. To find the amount of hours 8640 minutes is, divide 8640 by 60. 8640/60 = 144. 8640 minutes is 144 hours, and 144 divided by 24 is 6 days. There are 6 days in 8640 minutes.
Answer:
Using the Angle Addition Postulate, 20 + m∠DBC = 80. So, m∠DBC = 60° using the subtraction property of equality.
Step-by-step explanation:
If point D is the interior of angle ABC, then the angle addition postulate theory states that the sum of angle ABD and angle DBC is equals to angle ABC. The angle addition postulate is used to measure the resulting angle from two angles placed side by side.
From the attached image, ∠ABD and ∠DBC are placed side by side to form ∠ABC. Given that m∠ABD = 20° and m∠ABC = 80°
Hence, using angle addition postulate:
m∠ABD + m∠DBC = m∠ABC
20 + m∠DBC = 80
subtracting 20 from both sides (subtraction property of equality)
m∠DBC = 80 - 20
m∠DBC = 60°
Answer:
The Answer should be Quadrant III
Step-by-step explanation:
Hope this helped!
<h3>
Answer: 375</h3>
=========================================
Work Shown:
a = 300 = first term
r = 60/300 = 0.2 = common ratio
We multiply each term by 0.2, aka 1/5, to get the next term.
Since -1 < r < 1 is true, we can use the infinite geometric sum formula below
S = a/(1-r)
S = 300/(1-0.2)
S = 300/0.8
S = 375
----------
As a sort of "check", we can add up partial sums like so
- 300+60 = 360
- 300+60+12 = 360+12 = 372
- 300+60+12+2.4 = 372+2.4 = 374.4
- 300+60+12+2.4+0.48 = 374.4+0.48 = 374.88
and so on. The idea is that each time we add on a new term, we should be getting closer and closer to 375. I put "check" in quotation marks because it's probably not the rigorous of checks possible. But it may give a good idea of what's going on.
----------
Side note: If the common ratio r was either r < -1 or r > 1, then the terms we add on would get larger and larger. This would mean we don't approach a single finite value with the infinite sum.