D/4 - 3/4
I don’t know for sure though
First we need to find k ( rate of growth)
The formula is
A=p e^kt
A future bacteria 4800
P current bacteria 4000
E constant
K rate of growth?
T time 5 hours
Plug in the formula
4800=4000 e^5k
Solve for k
4800/4000=e^5k
Take the log for both sides
Log (4800/4000)=5k×log (e)
5k=log (4800/4000)÷log (e)
K=(log(4,800÷4,000)÷log(e))÷5
k=0.03646
Now use the formula again to find how bacteria will be present after 15 Hours
A=p e^kt
A ?
P 4000
K 0.03646
E constant
T 15 hours
Plug in the formula
A=4,000×e^(0.03646×15)
A=6,911.55 round your answer to get 6912 bacteria will be present after 15 Hours
Hope it helps!
Answer:
3(4x - 1)(2x + 3)
Step-by-step explanation:
Rearrange the equation into standard form
Subtract 9 - 30x from both sides
24x² + 30x - 9 = 0 ← in standard form
Take out 3 as a common factor
3(8x² + 10x - 3) = 0 ← factor the quadratic
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x term
product = 8 × - 3 = - 24, sum = 10
The factors are - 2 and + 12
Use these factors to replace the x- term, that is
8x² - 2x + 12x - 3 ( factor the first/second and third/fourth terms )
2x(4x - 1) + 3(4x - 1) ← take out the common factor (4x - 1)
(4x - 1)(2x + 3)
24x² + 30x - 9 = 3(4x - 1)(2x + 3) ← in factored form
Answer:

Step-by-step explanation:
difference of a number and 9 means to subtract

twice that means multiply by 2

at least is greater than or equal to
