1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
3 years ago
12

What is the Volume of the shape below?

Mathematics
2 answers:
barxatty [35]3 years ago
6 0

Answer:

Step-by-step explanation:

Multiply and add. It's that simple.

Leona [35]3 years ago
5 0

Answer:

v=720m^3

Step-by-step explanation:

v=lwh

volume=length x width x height

v=15 x 8 x 6

v=720m^3

hope this helps :)

You might be interested in
At the beginning of an environmental study, a forest covered an area of 1500 km. Since then, this area has decreased by 7.25% ea
WITCHER [35]

\qquad \textit{Amount for Exponential Decay} \\\\ y=P(1 - r)^t\qquad \begin{cases} y=\textit{current amount}\\ P=\textit{initial amount}\dotfill &1500\\ r=rate\to 7.25\%\to \frac{7.25}{100}\dotfill &0.0725\\ t=\textit{elapsed time}\dotfill &t\\ \end{cases} \\\\\\ y=1500(1-0.0725)^t\implies y=1500(0.9275)^t

5 0
2 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Find the axis of symmetry for this parabola:
aalyn [17]

The graph of the given Quadratic equation is attached in the Answer, where we can se that the axis of symmetry is :

  • x = 1

3 0
3 years ago
What is the slope of a line that passes through the points (3,0) and (3,2)
Alex787 [66]

Answer:

2

Step-by-step explanation:

5 0
3 years ago
PLEASE HELP FAST!!! How many solutions does this system have?
Aneli [31]

Step-by-step explanation:

  • y=3/4x+(-5)
  • -4x+4(3/4x+-5)=-20

-4x+3x-20=-20

-x=-20+20

-x=0

x=0

  • x=0 in y=3/4x-5

y=3/4×{0}-5

y=-5

5 0
3 years ago
Other questions:
  • Solve the system (picture) by substitution
    10·1 answer
  • I really need to know the answer this fast please!!!!!!
    14·1 answer
  • Factor 8x?+ 10x + 2.
    12·1 answer
  • Find the equation of the line passing through the points (2 11) and (-8 -19)
    6·1 answer
  • How do you create a model for 0.33 divided by 3
    11·2 answers
  • Thirty students in the fifth grade class listed their hair and eye colors in the table below: Brown hair Blonde hair Total Green
    13·1 answer
  • What is 55% of 38<br> A) 20.4<br> B)1767<br> C)2090<br> D)20.9<br> E) none of these
    7·2 answers
  • Can someone please give me the answer to this
    15·1 answer
  • I NEED HELP ON NUMBER 6 PLEASE A AND B, ITS
    14·1 answer
  • HELP AND YOU WILL GET BRAINLIEST!!!!!!!!
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!