The key is Esther travelled the same distance - x - in both her morning and evening commute.
45(time she took in the morning, or p) = x
30(time she took in the evening, or q) = x
Therefore 45(p) = 30(q), or divide both sides by 5 and get 9(p) = 6(q). I know you can divide it further, but these numbers are small enough and it's not worth the time.
Since the whole trip took an hour, (p + q) = 60min, and so, p = 60-q.
Therefore 9(60-q) = 6q or 540-9q = 6q. So 540 = 15q, which makes q = 36. If q = 36, then by (p+q)=60, p (the time she took in the morning) must equal 24.
45 miles per hour, her speed in the morning, times (24/60) hours, her time, makes 18 miles travelled in the morning. If you check, 30 miles per hour times (36/60) hours also makes 18 miles in the evening.
<span>Hope that makes a little sense. And I also hope it's right</span>
The key is to find the first term a(1) and the difference d.
in an arithmetic sequence, the nth term is the first term +(n-1)d
the firs three terms: a(1), a(1)+d, a(1)+2d
the next three terms: a(1)+3d, a(1)+4d, a(1)+5d,
a(1) + a(1)+d +a(1)+2d=108
a(1)+3d + a(1)+4d + a(1)+5d=183
subtract the first equation from the second equation: 9d=75, d=75/9=25/3
Plug d=25/3 in the first equation to find a(1): a(1)=83/3
the 11th term is: a(1)+(25/3)(11-1)=83/3 +250/3=111
Please double check my calculation. <span />
The slope is 2. slope is change in the y values divided by change in x values