Answer:
<h2>0.69, repeating</h2>
Step-by-step explanation:
<h2>23/33 =0.69</h2>
repeating
The area of a regular hexagon with an apothem 18.5 inches long and a side 21 inches is 1, 165. 5 In²
<h3>
How to calculate the area of a regular hexagon</h3>
The formula is given thus;
Area of hexagon = (1/2) × a × P
where a = the length of the apothem
P = perimeter of the hexagon
Given a = 18. 5 inches
Note that Perimeter, p = 6a with 'a' as side
p = 6 × 21 = 126 inches
Substitute values into the formula
Area, A = 1 ÷2 × 18. 5 × 126 = 1 ÷2 × 2331 = 1, 165. 5 In²
Thus, the area of the regular hexagon is 1, 165. 5 In²
Learn more about the area of a hexagon here:
brainly.com/question/15424654
#SPJ1
Answer:
The sum is x^3+x^2-5x+6
Step-by-step explanation:
Answer:
a) f(16) = 42
b) f(16) = 54
c) f(16) = 162
d) f(16) = 30
Step-by-step explanation:
a) y = mx + b ∧ m = (f(8) - f(4))/(8-4) ⇒ m = (18 - 6)/(8 - 4) = 3
b = y - mx = 6 - 3(4) = 6 - 12 = - 6
f(16) = 3(16) - 6 = 42
b) y = kxⁿ ∧ f(4) = 6 = k4ⁿ ∧ f(8) = 18 = k8ⁿ ⇒ 18/6 = (k8ⁿ)/(k4ⁿ) ⇒ 3 = 2ⁿ
n = ㏑(3) / ㏑(2) ⇒ k = y/xⁿ ⇒ k = 6/4ⁿ = 2/3
f(16) = 2/3 × 16ⁿ = 54
c) y = aeᵇˣ ∧ f(4) = 6 = aeᵇ⁴ ∧ f(8) = 18 = aeᵇ⁸ ⇒ 18/6 = (aeᵇ⁸)/(aeᵇ⁴) ⇒ 3 = e⁴ᵇ
b = ㏑(3/4) ∧ a = y / eᵇˣ ⇒ a = 6 / e⁴ᵇ = 2
f(16) = 2eᵇ¹⁶ = 162
d) y = a㏑(bx) ∧ f(4) = 6 = a㏑(b4) ∧ f(8) = 18 = a㏑(b8)
⇒ 18 - 6 = a㏑(b8) - a㏑(b4) ⇒ 12 = a㏑(8b/4b) ⇒ a = 12 / ㏑(2)
f(4) = 6 = a㏑(4b) ⇒ b = (√2)/4
f(16) = a㏑(b16) = 30