The number of times the tires will have to spin is 24.9 times. How I got this was by finding the circumference, the equation in this case where pi is 3.14 is 3.14(2.1). That equals 6.594, then you divide 164 by 6.594 to get 24.87109 blah blah and you round that up to 24.9.
![\bf \textit{vertical parabola vertex form with focus point distance} \\\\ 4p(y- k)=(x- h)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h,k+p)}\qquad \stackrel{directrix}{y=k-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\cap}\qquad \stackrel{"p"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvertical%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28y-%20k%29%3D%28x-%20h%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Ck%2Bp%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7By%3Dk-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Ccap%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Ccup%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)

something noteworthy is that the squared variable is the "x", thus the parabola is a vertical one, the "p" value is negative, so is opening downwards, and the h,k is pretty much the origin,
vertex is at (0,0)
the focus point is "p" or 5 units down from there, namely at (0, -5)
the directrix is "p" units on the opposite direction, up, namely at y = 5
the focal width, well, |4p| is pretty much the focal width, in this case, is simply yeap, you guessed it, 20.
Answer:The right answer is (B)
Step-by-step explanation:
Your welcome
The last two.
They are equivalent
3+3=6 6•4=24
4•3=12 12+12 is 24