Answer:
12 over 25
Step-by-step explanation:
48 over 100 = 12 over 25
a. The bridge can hold at most 1000 pounds. This tells you everyone's accumulative weight needs to be less than or equal to 1000. The problem does not give your friend's weight... yet. Let x = your friend's weight.
Your friend's weight (x) plus your weight (156) plus everyone else's weight (675) must be less than or equal to (≤) 1000 pounds.
x + 156 + 675 ≤ 1000
Combine like terms (the constants) to simplify and get your final inequality:
x + 831 ≤ 1000
b. Now, we find out your friend weighs 182 pounds. x = 182. We plug this into the above equation. If it results in a true statement, then you both can walk across the bridge.
182 + 831 ≤ 1000
1013 ≤ 1000, is not a true statement.
No. You both cannot walk across the bridge as is because the weight of the people on the bridge would be 13 pounds over the weight limit.
Q equals cube root of 64, because if q to the power of 3 is 64, then you need to cube root 64 to just get q
Answer:
In a geometric sequence, the <u>ratio</u> between consecutive terms is constant.
Step-by-step explanation:
A geometric sequence is where you get from one term to another by multiplying by the same value. This value is known as the <u>constant ratio</u>, or <u>common ratio</u>. An example of a geometric sequence and it's constant ratio would be the sequence 4, 16, 64, 256, . . ., in which you find the next term by multiplying the previous term by four. 4 × 4 = 16, 16 × 4 = 64, and so on. So, in this sequence the constant <em>ratio </em>would be four.