1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prisoha [69]
3 years ago
11

What is a real-world example of an exponential function?

Mathematics
2 answers:
AlexFokin [52]3 years ago
8 0

Answer:

Population growth, radioactive decay, and loan interest rates, calculate half-life, or plan your budget.

Eva8 [605]3 years ago
4 0

Disease spread is modeled with exponential functions very frequently, at least in the early stages of growth. For a particularly relevant example, I've attached a graph tracking the growth of the novel coronavirus, through its outbreak in several major countries. Note that this graph is a <em>logarithmic</em> one; every notch on the y-axis is 10 times larger than the last, so any exponential patterns will be visible as <em>lines</em> on this graph.

In a typical exponential function, you'll typically have some <em>initial value</em> and a <em>multiplier. </em>For example, in the function f(x)=3\cdot2^x, we start with an initial value of 3 and double that value every time x is incremented by 1. Epidemiologists have a special name for the multiplier in the case of a disease or potential epidemic: the <em>basic reproduction number</em>, or R_0, as it's usually written. R_0 represents the average number of cases of a infection person in the population is expected to spread. Novel coronavirus has an R_0 between 2.1-2.7, meaning the average carrier will spread it to at least 2 other people over the course of their infection. This seems like a small number at first, but doubling the number of infected each period leads to some frightening growth.

Thankfully, R_0 isn't the only thing that matters for the spread of disease, as in many cases it doesn't take into account preventative measures taken against spreading infection. Sheltering-in-place, social distancing, and effective hygiene go a long way, and you should be practicing them as much as you can in these coming weeks and months to help turn this exponential curve into a linear one!

You might be interested in
4 girls share 38 cookies so that each scholar gets the same amount
GarryVolchara [31]

Answer:

9.5

Step-by-step explanation:

38 / 4 = 9.5

6 0
3 years ago
Match the mean, median, mode, and range for the data set below.<br> 19, 18, 16, 6, 8, 18, 14, 14, 13
Shalnov [3]

Answer: the mean is 13.4

Step-by-step explanation:

8 0
4 years ago
Read 2 more answers
How do I find A’?<br><br><br><br> Let U={a,b,c,d,e,f,g} and A={a,b,e,f}
vesna_86 [32]

Let U={a,b,c,d,e,f,g,h}

A={a,c,d}

B={b,c,d}

C={b,e,f,g,h}

6 0
3 years ago
1. Determinar la ecuación canónica de la parábola con vértice en (-2,4) y foco en (1,4) 2. Determinar el foco y el vértice de la
goldenfox [79]

Answer:

1. La ecuación de la parábola en forma canónica es x = 1/12 × (y - 4) ² - 2

2. Vértice = (-1, 3), enfoque = (-5/2, 3)

3. y = 12x no es una parábola

4. y = -8x, no es una parábola

Step-by-step explanation:

1. La ecuación estándar de una parábola es y = a · x² + b · x + c

El vértice V es (h, k)

El foco (h + p, k)

Por lo tanto, tenemos en comparación k = 4, h = -2

h + p = 1

p = 1 - h = 1 - (-2) = 3

Lo que da la ecuación como (y - k) ² = 4 · p · (x - h)

Al ingresar los valores de k, h y p, tenemos

(y - 4) ² = 4 × 3 × (x - (-2)) = 12 × (x + 2)

12 · x + 24 = (y - 4) ²

x = 1/12 × (y - 4) ² - 2

La ecuación de la parábola en forma canónica es x = 1/12 × (y - 4) ² - 2

2. Determinar el foco y el vértice de la parábola (y - 3) ² = -6 · (x + 1)

Reescribimos la ecuación en forma de vértice de la siguiente manera;

-6 · x -6 = (y - 3) ²

x = -1 / 6 × (y - 3) ² - 1

La ecuación de una parábola en forma de vértice es x = a · (y - k) ² + h

Con el vértice = (h, k)

Comparando, tenemos, h = -1 yk = 3, el vértice = (-1, 3)

También la ecuación de la parábola en forma cónica es (y - k) ² = 4 · p · (x - h)

Comparando con (y - 3) ² = -6 · (x + 1), tenemos 4p = -6, p = -3/2

El foco está en (h + p, k) que es (-1 + -3/2, 3) = (-5/2, 3)

Vértice = (-1, 3), Enfoque = (-5/2, 3)

3. Para la parábola, y = 12 · x, tenemos;

En comparación con la forma de la ecuación, y = a · x² + b · x + c

b = 12, a = 0, c = 0

Dado que el vértice = (h, k), tenemos;

h = -b / (2 × 0), h = ∞

k = a · h² + b · h + c = ∞

No hay vértice

Foco x valor = Vértice x valor = ∞

No hay foco

Directrix = (k - 1) / (4 · a) = (k - 1) / (4 × 0) = ∞, sin directriz

y = 12x no es una parábola

4. Para y = -8x, tampoco es una parábola como se muestra arriba.

4 0
3 years ago
Show work and explain with formulas.
Natasha_Volkova [10]

23 Answer:  \bold{\dfrac{29,524}{9}}

<u>Step-by-step explanation:</u>

\dfrac{1}{9}+\dfrac{1}{3}+1+...+2187\\\\\\a_1=\dfrac{1}{9}=3^{-2}\qquad r=3\qquad a_n=2187\\\\\underline{\text{Find n:}}\\a_n=a_1\cdot r^{n-1}\\2187=3^{-2}(3)^{n-1}\\2187=3^{n-3}\\3^7=3^{n-3}\\7=n-3\\10=n

\underline{\text{Find the sum:}}\\S_n=\dfrac{a_1(1-r^n)}{1-r}\\\\\\S_{10}=\dfrac{\frac{1}{9}(1-3^{10})}{1-3}\\\\\\.\quad =\dfrac{1-59,049}{(9)(-2)}\\\\\\.\quad =\dfrac{-59,048}{9(-2)}\\\\\\.\quad =\large\boxed{\dfrac{29,524}{9}}

24 Answer:  \bold{\dfrac{364}{9}}

<u>Step-by-step explanation:</u>

a_1=27\qquad r=\dfrac{1}{3}\qquad n=6\\\\S_n=\dfrac{a_1(1-r^n)}{1-r}\\\\\\S_6=\dfrac{27(1-\frac{1}{3}^6)}{1-\frac{1}{3}}\\\\\\.\quad =\dfrac{27(\frac{728}{729})}{\frac{2}{3}}\\\\\\.\quad =\dfrac{27(728)}{729}\cdot \dfrac{3}{2}\\\\\\.\quad =\large\boxed{\dfrac{364}{9}}

25 Answer:  n=7

<u>Step-by-step explanation:</u>

\{-6,\ -12,\ -24,\ ...\ \}\\\\a_1=-6\qquad r=2\qquad S_n=-762\\\\S_n=\dfrac{a_1(1-r^n)}{1-r}\\\\\\-762=\dfrac{-6(1-2^n)}{1-2}\\\\\\-762=\dfrac{-6(1-2^n)}{-1}\\\\\\\dfrac{-762}{6}=1-2^n\\\\-127=1-2^n\\\\-128=-2^n\\\\128=2^n\\\\2^7=2^n\\\\\large\boxed{7=n}

3 0
3 years ago
Read 2 more answers
Other questions:
  • 4.139 To The Nearest Hundredth
    14·2 answers
  • What is the fourth term of this sequence?<br> a1 = 4, an = 5a n-1
    9·1 answer
  • 2. Carissa also has a sink that is shaped like a half-sphere. The sink has a volume of 2000/3 pi in^3 . One day, her sink clogge
    14·1 answer
  • What rational number is one half of the way between 2 and 6.5
    11·2 answers
  • The sum of the squares of two consecutive integers is 41. find the integers
    10·2 answers
  • A system of equations can be written to represent coin and pricing problems. True or False. True False
    8·1 answer
  • The scatter plot shows the number of people visiting a walking track on 15 different days and the temperature on those days.
    12·1 answer
  • I need help with this please help me i got it wrong
    15·1 answer
  • Find the Unit rate<br> a) 1326 students/<br> 39 teachers
    13·1 answer
  • there are 4 red balls in a bag and 8 yellow balls a ball is drawn random from the bag find the probability of not red ball​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!