Answer;
The enzyme structure begins to break down
intermolecular bonds are broken
enzyme molecules gain kinetic energy.
Explanation;
Enzymes are proteins that play an important function in the body of catalyzing reactions in the body.
Enzymes work best at optimum temperature; low temperature lower than optimum temperatures deactivates them and higher temperature denatures them.
The shape of an enzyme depends on its temperature; when they get too warm they get loose, and at very low temperatures they get too tight. At optimum temperature or at the right temperature then they are just at the right shape and the chemical reactions they catalyze will be at optimal rate.
Atoms are the smallest unit of non-living things and CELLS are the smallest unit of living things.
The distinguishing characteristics of the free living members of sarcodina are:
1. These are pseudopods (function in locomotion) which makes it the extentions of protoplasm.
2. These have both a clear ectoplasm and a granualated endoplasm.
3. These have nucleus both food vacuoles and contractile vacuoles.
The type of deafness that is present if the bone conducted sound is heard longer than the air conducted sound is CONDUCTIVE HEARING LOSS.
Conductive hearing loss refers to the situation where there is a problem conducting sound waves anywhere along the route through the outer ear to the ear drum and the tiny bones of the middle ear.
Answer:
I think the question is "How might an RNA-based genome results display an increased in infection rate?" because current statement doesn't convey a message clearly.
Explanation:
To answer this question, we need to understand first that what is gene expression. Gene expression is a process in which genetic information is transcribed first to RNA and then into proteins. During transcription stage, only active genes would be transcribed to RNA and all other DNA material don't transcribe at all. Now, if there is an infection, host cell would express only those genes which would actively take part in the defense mechanism, e.g. R-genes, genes involved in production of reactive oxygen species, etc. Hence, to monitor the infection rate, we will look at the RNA-based genome. To do this, we will extract the total RNA and then would sequence it. Then we will annotate the genes and check the relative abundance (differential expression). Finally, we would have a clear that these genes were active against the infection. By doing temporal sampling and sequencing, we would be able to measure the rate as well.
For the second part, potential complications that could arise in doing analysis is the lower amount of RNA, or rapid degradation of RNA in case of presence of RNAses. RNA can be degraded easily at room temperature.