All three series converge, so the answer is D.
The common ratios for each sequence are (I) -1/9, (II) -1/10, and (III) -1/3.
Consider a geometric sequence with the first term <em>a</em> and common ratio |<em>r</em>| < 1. Then the <em>n</em>-th partial sum (the sum of the first <em>n</em> terms) of the sequence is

Multiply both sides by <em>r</em> :

Subtract the latter sum from the first, which eliminates all but the first and last terms:

Solve for
:

Then as gets arbitrarily large, the term
will converge to 0, leaving us with

So the given series converge to
(I) -243/(1 + 1/9) = -2187/10
(II) -1.1/(1 + 1/10) = -1
(III) 27/(1 + 1/3) = 18
4 · x^4 · x^4 · y
4 x^8 y
In words: four times x to the eighth times y
Answer and Step-by-step explanation:
To simplify, distribute the negative number.
-(11 + 2b)
<u>-11 - 2b is the answer.</u>
<u></u>
<u></u>
<em><u>#teamtrees #PAW (Plant And Water)</u></em>
<em><u></u></em>
<em><u>I hope this helps!</u></em>
Answer:
so like I just looked it up so try
-4
----
-4
<h3>
Answer: Choice B</h3><h3>
y = x^2 + 7x + 1</h3>
======================================
Proof:
A quick way to confirm that choice B is the only answer is to eliminate the other non-answers.
If you plugged x = 1 into the equation for choice A, you would get
y = -x^2 + 7x + 1
y = -1^2 + 7(1) + 1
y = -1 + 7 + 1
y = 7
We get a result of 7, but we want 9 to be the actual output. So choice A is out.
-----------
Repeat for choice C. Plug in x = 1
y = x^2 - 7x + 1
y = 1^2 - 7(1) + 1
y = 1 - 7 + 1
y = -5
We can eliminate choice C (since again we want a result of y = 9)
-----------
Finally let's check choice D
y = x^2 - 7x - 1
y = 1^2 - 7(1) - 1
y = 1 - 7 - 1
y= -7
so choice D is off the list as well
-----------
The only thing left is choice B, so it must be the answer. It turns out that plugging x = 1 into this equation leads to y = 9 as shown below
y = x^2 + 7x + 1
y = 1^2 + 7(1) + 1
y = 1 + 7 + 1
y = 9
And the same applies to any other x value in the table (eg: plugging in x = 3 leads to y = 31, etc etc).