This involves quite a lot of arithmetic to do manually.
The first thing you do is to make the first number in row 2 = to 0.
This is done by R2 = -3/2 R1 + R2
so the matrix becomes
( 2 1 1) ( -3 )
( 0 -13/2 3/2) (1/2 )
(5 -1 2) (-2)
Next step is to make the 5 in row 5 = 0
then the -1 must become zero
You aim for the form
( 1 0 0) (x)
(0 1 0) (y)
(0 0 1) ( z)
x , y and z will be the required solutions.
Answer:
x = 12.48
y = 13.22
Step-by-step explanation
Im not sure if its correct
10^2 + b^2 = 16^2
100 + b^2 = 256
b^2 = √156
b = 12.48
b= 12 ( If needed to round to the nearest whole number)
a^2 + 15^2 = 20^2
a^2 + 225 = 400
a^2 = √175
a = 13.22
a = 13 ( If needed to round to nearest whole number)
74% means 0.74
"of" means "times"
So, 128 = 0.74 times (the number)
Divide each side of this equation by 0.74 :
128/0.74 = the number
<em>172.973</em> (rounded) = the number
Step-by-step explanation:
(a) ∫₋ₒₒ°° f(x) dx
We can split this into three integrals:
= ∫₋ₒₒ⁻¹ f(x) dx + ∫₋₁¹ f(x) dx + ∫₁°° f(x) dx
Since the function is even (symmetrical about the y-axis), we can further simplify this as:
= ∫₋₁¹ f(x) dx + 2 ∫₁°° f(x) dx
The first integral is finite, so it converges.
For the second integral, we can use comparison test.
g(x) = e^(-½ x) is greater than f(x) = e^(-½ x²) for all x greater than 1.
We can show that g(x) converges:
∫₁°° e^(-½ x) dx = -2 e^(-½ x) |₁°° = -2 e^(-∞) − -2 e^(-½) = 0 + 2e^(-½).
Therefore, the smaller function f(x) also converges.
(b) The width of the intervals is:
Δx = (3 − -3) / 6 = 1
Evaluating the function at the beginning and end of each interval:
f(-3) = e^(-9/2)
f(-2) = e^(-2)
f(-1) = e^(-1/2)
f(0) = 1
f(1) = e^(-1/2)
f(2) = e^(-2)
f(3) = e^(-9/2)
Apply Simpson's rule:
S = Δx/3 [f(-3) + 4f(-2) + 2f(-1) + 4f(0) + 2f(1) + 4f(2) + f(3)]
S ≈ 2.5103
Answer:
17
Step-by-step explanation:
55-15-18-5=17