1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
daser333 [38]
4 years ago
15

-1.4(-5+7g)=? simplify the expression​

Mathematics
1 answer:
iogann1982 [59]4 years ago
4 0

Answer:

7 - 9.8g

Step-by-step explanation:

-1.4(-5+7g)\\\\\boxed{7-9.8g}\\\\\left \{ {{-1.4*-5=7} \atop {-1.4*7g=-9.8g}} \right.

Hope this helps.

You might be interested in
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
Answers to
Papessa [141]
Can you type it out please?
5 0
3 years ago
Read 2 more answers
Please help me with my recent questions!!! Will 100% give brainleist.
stepladder [879]

Answer:

what do you want me to answer?

Step-by-step explanation:

7 0
3 years ago
Mrs. Robert’s vegetable garden is 6 feet wide and 8 feet long. A drawing of the garden has a scale of 1 inch 2 feet. What is the
RSB [31]

Answer:

Step-by-step explanation:

It’s 24

5 0
3 years ago
Read 2 more answers
a. the​ function's domain; b. the​ function's range; c. the​ x-intercepts, if​ any; d. the​ y-intercept, if​ any; and e. the mis
choli [55]

Answer:

c or e

Step-by-step explanation:

7 0
1 year ago
Other questions:
  • ASAP AWARDING MAJOR POINTS Determine the symbols(+,-,*. And division) to be placed in each ⭕️ the first one must be simplified t
    12·2 answers
  • PLSSSSSSS HELP will crown brainliest!!!!!!!
    11·1 answer
  • The length of a rectangle plus its width is 15 cm. The area is 44 square cm. What are the length and width of the rectangle?
    15·2 answers
  • Which of the following tables represents a proportional relationship?
    15·1 answer
  • What is the approximate area of a segment of a circle with a height 6 m and the length of the chord is 20 m? Round your answer t
    7·1 answer
  • The graph shows the amount of water that remains in a barrel after it begins to leak. The variable x represents the number of da
    13·1 answer
  • Fill in the table using this function rule. y= -3x+4
    10·1 answer
  • Li bought his dog Spot a huge bone. Spot chews 4 inches off the bone every day. What number describes the change in the length o
    13·1 answer
  • Mr. Dunson made a model of a skyscraper that was 10 in. high. If Mr. Dunson used the scale of 2 inches represents 12 feet, what
    5·1 answer
  • 3/4 divided by 1/5 <br> Please help
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!