The only possible answer is
X= 0
Hope this is correct and good luckk!!!! :)
The area of the David's pantry = 10 square feet.
The length of the pantry = 5 feet.
<h3>Define the term area of the rectangle?</h3>
- The territory inhabited by a rectangle inside its 4 sides or limits is known as its area.
- The area of such a rectangle is determined by its sides. Essentially, the formula calculating area is equivalent to the product of the rectangle's length and breadth.
For the given question.
- David's kitchen is 60 square feet in size.
- The kitchen is six times the size of the living room.
Thus,
Area of kitchen = 6 x area of the pantry
60 = 6 x area of the pantry
area of the pantry = 60 / 6 = 10 square feet.
Area of the pantry = length x breadth
10 = length x 2
length = 10/2 = 5 feet.
Thus, the length of the pantry is found as the 5 feet.
To know more about the area of the rectangle, here
brainly.com/question/16239445
#SPJ4
Let's call the stamps A, B, and C. They can each be used only once. I assume all 3 must be used in each possible arrangement.
There are two ways to solve this. We can list each possible arrangement of stamps, or we can plug in the numbers to a formula.
Let's find all possible arrangements first. We can easily start spouting out possible arrangements of the 3 stamps, but to make sure we find them all, let's go in alphabetical order. First, let's look at the arrangements that start with A:
ABC
ACB
There are no other ways to arrange 3 stamps with the first stamp being A. Let's look at the ways to arrange them starting with B:
BAC
BCA
Try finding the arrangements that start with C:
C_ _
C_ _
Or we can try a little formula; y×(y-1)×(y-2)×(y-3)...until the (y-x) = 1 where y=the number of items.
In this case there are 3 stamps, so y=3, and the formula looks like this: 3×(3-1)×(3-2).
Confused? Let me explain why it works.
There are 3 possibilities for the first stamp: A, B, or C.
There are 2 possibilities for the second space: The two stamps that are not in the first space.
There is 1 possibility for the third space: the stamp not used in the first or second space.
So the number of possibilities, in this case, is 3×2×1.
We can see that the number of ways that 3 stamps can be attached is the same regardless of method used.
8 and 7 are both a factor of 56.