1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olasank [31]
3 years ago
14

Determine whether each table below models a linear, quadratic or exponential function

Mathematics
2 answers:
Natalka [10]3 years ago
7 0

Answer:

Linear   Quadratic   Exponential

Step-by-step explanation:

pantera1 [17]3 years ago
3 0

Answer:

First table models Linear, second quadratic and third one exponential functions.

Step-by-step explanation:

To find whether the given table models a linear function there should be a constant change in y values with the constant change in x values of the table.

We take the example of first table written as linear.

Here change in x values is

6 - 5 = 1

7 - 6 = 1

8 - 7 = 1

Similarly change in y values is

1 - 4 = -3

-2 - 1 = -3

-5 -(-2) = -3

There is a common difference in y values = -3

So the given table models linear function.

We take the second table.

For quadratic function with the constant change in x values, difference of difference in y values is constant.

Change in x - values

6 - 5 = 1

7 - 6 = 1

8 - 7 = 1

Difference in y values

1 - 0 = 1

4 - 1 = 3

9 - 4 = 5

Now difference in difference of y values

3 - 1  = 2

5 - 3 = 2

Here, difference in difference of y values is 2

So the given table models a quadratic equation.

Now we take the third table.

For exponential function in the form of f(x) = a(r)^{n} there should be a common ratio in the terms of y values.

\frac{\text{Second term of y}}{\text{First term of y }}= \frac{2}{1}=2

\frac{\text{Third term of y}}{\text{Second term of y }}= \frac{4}{2}=2

So there is a common ratio of 2 in each term.

Therefore, the given table models exponential equation.

First table models Linear, second quadratic and third one exponential functions.

You might be interested in
Help Please
klasskru [66]
Correct answer is A.

(x^2+4x-3)(2x^2+x+6)
\\=x^2(2x^2+x+6)+4x(2x^2+x+6)-3(2x^2+x+6)
\\=2x^4+x^3+6x^2+8x^3+4x^2+24x-6x^2-3x-18
\\=2x^4+x^3+8x^3+6x^2+4x^2-6x^2+24x-3x-18
\\=2x^4+9x^3+4x^2+21x-18
6 0
3 years ago
On Monday the store is having a sale and all the school supplies are 1/2 off,how much money would you save if u shop on Monday
Blababa [14]
Since everything is half off, you save half of your money or %50.
3 0
3 years ago
Kendall brought drinks for the 7th grade end of the year party. All the drinks Kendall brought, 49 of them was cola drinks. if c
Lilit [14]

Divide the number of colas by the percentage that was colas:

49/0.35 = 140

There were 140 total drinks.

4 0
3 years ago
Read 2 more answers
9. The sum of 10 and 7 times a number is 59. What is the<br> number? (Use n as the variable.)
PSYCHO15rus [73]
10+7n=59
7n=59-10
7n=49
n=49/7
n=7
4 0
3 years ago
Read 2 more answers
Find y when x=12 if y=15 when x=3
larisa [96]
The answer would be y=60.

I think.
4 0
3 years ago
Other questions:
  • Which expression is equivalent to 54n-20m+6n
    9·2 answers
  • Find the value of 5x-10 given that - 2x +7=3.
    13·1 answer
  • What’s the correct answer for this?
    14·2 answers
  • LOOK AT CHART BEFORE THE BULLET PART:
    11·1 answer
  • (6+2)-15divided5*2. How can I add all this up
    12·1 answer
  • Round 23.5481 to the nearest thousandth
    7·1 answer
  • David launches a rock straight up over the edge of a 60-foot cliff and into the ocean. after 4 seconds, the rock reaches a maxim
    10·1 answer
  • 3x + -3x = 0 is an example of what property?
    11·2 answers
  • A rubber ball is bounced from a height of 9 meters and bounces continuously .Each successive bounce reaches a height that is a t
    14·2 answers
  • A bakery sold 154 mocha cupcakes in a day, which was 35% of the total number of cupcakes sold that day. How many total cupcakes
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!