Answer:
a) P(x<5)=0.
b) E(X)=15.
c) P(8<x<13)=0.3.
d) P=0.216.
e) P=1.
Step-by-step explanation:
We have the function:

a) We calculate the probability that you need less than 5 minutes to get up:

Therefore, the probability is P(x<5)=0.
b) It takes us between 10 and 20 minutes to get up. The expected value is to get up in 15 minutes.
E(X)=15.
c) We calculate the probability that you will need between 8 and 13 minutes:
![P(8\leq x\leq 13)=P(10\leqx\leq 13)\\\\P(8\leq x\leq 13)=\int_{10}^{13} f(x)\, dx\\\\P(8\leq x\leq 13)=\int_{10}^{13} \frac{1}{10} \, dx\\\\P(8\leq x\leq 13)=\frac{1}{10} \cdot [x]_{10}^{13}\\\\P(8\leq x\leq 13)=\frac{1}{10} \cdot (13-10)\\\\P(8\leq x\leq 13)=\frac{3}{10}\\\\P(8\leq x\leq 13)=0.3](https://tex.z-dn.net/?f=P%288%5Cleq%20x%5Cleq%2013%29%3DP%2810%5Cleqx%5Cleq%2013%29%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cint_%7B10%7D%5E%7B13%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cint_%7B10%7D%5E%7B13%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Ccdot%20%5Bx%5D_%7B10%7D%5E%7B13%7D%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Ccdot%20%2813-10%29%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B3%7D%7B10%7D%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D0.3)
Therefore, the probability is P(8<x<13)=0.3.
d) We calculate the probability that you will be late to each of the 9:30am classes next week:
![P(x>14)=\int_{14}^{20} f(x)\, dx\\\\P(x>14)=\int_{14}^{20} \frac{1}{10} \, dx\\\\P(x>14)=\frac{1}{10} [x]_{14}^{20}\\\\P(x>14)=\frac{6}{10}\\\\P(x>14)=0.6](https://tex.z-dn.net/?f=P%28x%3E14%29%3D%5Cint_%7B14%7D%5E%7B20%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%28x%3E14%29%3D%5Cint_%7B14%7D%5E%7B20%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%28x%3E14%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Bx%5D_%7B14%7D%5E%7B20%7D%5C%5C%5C%5CP%28x%3E14%29%3D%5Cfrac%7B6%7D%7B10%7D%5C%5C%5C%5CP%28x%3E14%29%3D0.6)
You have 9:30am classes three times a week. So, we get:

Therefore, the probability is P=0.216.
e) We calculate the probability that you are late to at least one 9am class next week:
![P(x>9.5)=\int_{10}^{20} f(x)\, dx\\\\P(x>9.5)=\int_{10}^{20} \frac{1}{10} \, dx\\\\P(x>9.5)=\frac{1}{10} [x]_{10}^{20}\\\\P(x>9.5)=1](https://tex.z-dn.net/?f=P%28x%3E9.5%29%3D%5Cint_%7B10%7D%5E%7B20%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%28x%3E9.5%29%3D%5Cint_%7B10%7D%5E%7B20%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%28x%3E9.5%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Bx%5D_%7B10%7D%5E%7B20%7D%5C%5C%5C%5CP%28x%3E9.5%29%3D1)
Therefore, the probability is P=1.
Answer:

Step-by-step explanation:
Given:
KL ║ NM ,
LM = 45
m∠M = 50°
KN ⊥ NM
NL ⊥ LM
Find: KN and KL
1. Consider triangle NLM. This is a right triangle, because NL ⊥ LM. In this triangle,
LM = 45
m∠M = 50°
So,

Also
(angles LNM and M are complementary).
2. Consider triangle NKL. This is a right triangle, because KN ⊥ NM . In this triangle,
(alternate interior angles)
(angles KNL and KLN are complementary).
So,

and

X = 7. Because both lines equal the same so it has to equal 75
11 x 7 = 77
77-2 = 75
X = 7
X^2 +2x +10 = 0
D = 4 -40 = - 36
x_1,2 = (-2 +/- sqrt(-36))/2 = (-2 +/- 6i)/2 = 2(-1 +/- 3i)/2 = -1 +/- 3i
x_1,2 = -1 +/- 3i or more understandably
x_1 = -1 -3i and x_2 = -1 +3i
hope this will help you